Risk factor classification for drivers in Mexico using data science

dc.audience.educationlevelEstudiantes/Studentses_MX
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorCadena Rodríguez, Rodrigo
dc.contributor.catalogerpuemcuervo,emipsanchez
dc.contributor.committeememberHernández Gress, Eva Selene
dc.contributor.committeememberOrtiz Bayliss, José Carlos
dc.contributor.committeememberLozano Medina, Luis Angel
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorHervert Escobar, Laura
dc.date.accepted2023-05-31
dc.date.accessioned2025-03-12T17:01:12Z
dc.date.issued2023-05-31
dc.description.abstractThe aim of this dissertation is to find an optimal way to profile drivers in Mexico analysing different databases of car accidents and auto insurance claims inside this country and using gradient boosting algorithms. According to the National Public Health Institute, Mexico is in seventh-place globally and third place in Latin America in the most deaths caused by car accidents' ranking. Moreover, even when it is mandatory to have car insurance when having a car, only 30\% of people hires a car insurance. This is mainly because of the prices that insurance companies offer, and this happens because most of them are using old methods that do not consider all the crucial variables and treat all their customers as if everybody had the same risk for making a claim, even when companies in other countries are using some machine learning models that have been proved to be efficient and permitted a low-cost premium based on users profile.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120320es_MX
dc.identifier.citationCadena Rodríguez, R. (2023). Risk factor classification for drivers in Mexico using data science [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703316
dc.identifier.orcidhttps://orcid.org/0009-0006-5080-3305es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703316
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICOes_MX
dc.subject.keywordGradient Boostinges_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordXGBoostes_MX
dc.subject.keywordCatBoostes_MX
dc.subject.keywordLight GBMes_MX
dc.subject.keywordSMOTEes_MX
dc.subject.keywordSMOTEENes_MX
dc.subject.keywordRisk Profilinges_MX
dc.subject.lcshTechnologyes_MX
dc.titleRisk factor classification for drivers in Mexico using data sciencees_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
CadenaRodriguez_TesisMaestríapdfa.pdf
Size:
15.61 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CadenaRodriguez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
701.63 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CadenaRodriguez_CartaAutorizacionpdf.pdf
Size:
168.93 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia