Tesis de maestría / master thesis

Risk factor classification for drivers in Mexico using data science

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

The aim of this dissertation is to find an optimal way to profile drivers in Mexico analysing different databases of car accidents and auto insurance claims inside this country and using gradient boosting algorithms. According to the National Public Health Institute, Mexico is in seventh-place globally and third place in Latin America in the most deaths caused by car accidents' ranking. Moreover, even when it is mandatory to have car insurance when having a car, only 30\% of people hires a car insurance. This is mainly because of the prices that insurance companies offer, and this happens because most of them are using old methods that do not consider all the crucial variables and treat all their customers as if everybody had the same risk for making a claim, even when companies in other countries are using some machine learning models that have been proved to be efficient and permitted a low-cost premium based on users profile.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia