Multimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorCantoral Ceballos, José Antonio
dc.contributor.authorCárdenas Castro, Héctor Manuel
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberTrejo Rodríguez, Luis Ángel
dc.contributor.committeememberCastañeda Miranda, Alejandro
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorCaraza Camacho, Ricardo
dc.date.accepted2025-06
dc.date.accessioned2025-07-18T01:45:12Z
dc.date.issued2025-05
dc.descriptionhttps://orcid.org/0000-0001-5597-939X
dc.description.abstractThe aging brain undergoes complex structural and functional transformations that differ- entiate healthy aging from pathological trajectories such as dementia. This study pioneers a multimodal neuroimaging and explainable deep learning framework to characterize brain aging, identify biomarkers of neurodegeneration, and elucidate the interplay between local anatomical changes and global network reorganization. Leveraging structural MRI-derived volumetrics and graph theory-based connectivity metrics extracted from resting-state fMRI from a heterogeneous cohort of cognitively healthy individuals and patients with Dementia attributed to Alzheimer’s and non-Alzheimer’s Disease, two predictive models were devel- oped: (1) a brain-age regression model to quantify deviations from normative aging patterns and (2) a dementia classification model to distinguish pathological from healthy aging. Both models achieved robust performance (mean absolute error = 0.68 years for controls in re- gression; F1-score = 0.93 for classification), with interpretable feature contributions revealed through SHAP (SHapley Additive exPlanations) analyses. Explainable AI (SHAP) analyses revealed non-linear feature interactions and highlighted established and novel neuroanatom- ical correlates of brain aging and dementia. By synthesizing computational innovation with clinical neuroimaging, this research provides actionable biomarkers for aging research, re- fines the conceptual framework of compensatory brain reorganization, and establishes a new contribution for AI-driven precision diagnostics in neurodegenerative disorders.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator320111
dc.identificator330723
dc.identifier.citationCárdenas Castro, H. M. (2025). Multimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703862
dc.identifier.urihttps://hdl.handle.net/11285/703862
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::NEUROCIENCIAS::NEUROFISIOLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LAS TELECOMUNICACIONES::DISPOSITIVOS DE RAYOS X
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::CIENCIAS CLÍNICAS::RADIOLOGÍA
dc.subject.keywordXAI
dc.subject.keywordDeep Learning
dc.subject.keywordNeuroimaging
dc.subject.keywordAging
dc.subject.keywordDementia
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleMultimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
CardenasCastro_TesisMaestria_pdfa.pdf
Size:
5.05 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CardenasCastro_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
372.03 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CardenasCastro_CartaAutorizacion_pdf.pdf
Size:
127.14 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia