Multimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging
| dc.audience.educationlevel | Investigadores/Researchers | |
| dc.audience.educationlevel | Estudiantes/Students | |
| dc.audience.educationlevel | Maestros/Teachers | |
| dc.audience.educationlevel | Otros/Other | |
| dc.contributor.advisor | Cantoral Ceballos, José Antonio | |
| dc.contributor.author | Cárdenas Castro, Héctor Manuel | |
| dc.contributor.cataloger | emipsanchez | |
| dc.contributor.committeemember | Trejo Rodríguez, Luis Ángel | |
| dc.contributor.committeemember | Castañeda Miranda, Alejandro | |
| dc.contributor.department | School of Engineering and Sciences | |
| dc.contributor.institution | Campus Monterrey | |
| dc.contributor.mentor | Caraza Camacho, Ricardo | |
| dc.date.accepted | 2025-06 | |
| dc.date.accessioned | 2025-07-18T01:45:12Z | |
| dc.date.issued | 2025-05 | |
| dc.description | https://orcid.org/0000-0001-5597-939X | |
| dc.description.abstract | The aging brain undergoes complex structural and functional transformations that differ- entiate healthy aging from pathological trajectories such as dementia. This study pioneers a multimodal neuroimaging and explainable deep learning framework to characterize brain aging, identify biomarkers of neurodegeneration, and elucidate the interplay between local anatomical changes and global network reorganization. Leveraging structural MRI-derived volumetrics and graph theory-based connectivity metrics extracted from resting-state fMRI from a heterogeneous cohort of cognitively healthy individuals and patients with Dementia attributed to Alzheimer’s and non-Alzheimer’s Disease, two predictive models were devel- oped: (1) a brain-age regression model to quantify deviations from normative aging patterns and (2) a dementia classification model to distinguish pathological from healthy aging. Both models achieved robust performance (mean absolute error = 0.68 years for controls in re- gression; F1-score = 0.93 for classification), with interpretable feature contributions revealed through SHAP (SHapley Additive exPlanations) analyses. Explainable AI (SHAP) analyses revealed non-linear feature interactions and highlighted established and novel neuroanatom- ical correlates of brain aging and dementia. By synthesizing computational innovation with clinical neuroimaging, this research provides actionable biomarkers for aging research, re- fines the conceptual framework of compensatory brain reorganization, and establishes a new contribution for AI-driven precision diagnostics in neurodegenerative disorders. | |
| dc.description.degree | Master of Science in Computer Science | |
| dc.format.medium | Texto | |
| dc.identificator | 320111 | |
| dc.identificator | 330723 | |
| dc.identifier.citation | Cárdenas Castro, H. M. (2025). Multimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703862 | |
| dc.identifier.uri | https://hdl.handle.net/11285/703862 | |
| dc.language.iso | eng | |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation.isFormatOf | acceptedVersion | |
| dc.rights | openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0 | |
| dc.subject.classification | BIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::NEUROCIENCIAS::NEUROFISIOLOGÍA | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LAS TELECOMUNICACIONES::DISPOSITIVOS DE RAYOS X | |
| dc.subject.classification | MEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::CIENCIAS CLÍNICAS::RADIOLOGÍA | |
| dc.subject.keyword | XAI | |
| dc.subject.keyword | Deep Learning | |
| dc.subject.keyword | Neuroimaging | |
| dc.subject.keyword | Aging | |
| dc.subject.keyword | Dementia | |
| dc.subject.lcsh | Technology | |
| dc.subject.lcsh | Science | |
| dc.title | Multimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging | |
| dc.type | Tesis de maestría |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- CardenasCastro_TesisMaestria_pdfa.pdf
- Size:
- 5.05 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- CardenasCastro_ActaGradoDeclaracionAutoria_pdfa.pdf
- Size:
- 372.03 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración de Autoría
Loading...
- Name:
- CardenasCastro_CartaAutorizacion_pdf.pdf
- Size:
- 127.14 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.28 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

