Tesis de maestría

Multimodal neuroimaging and explainable deep learning for characterizing brain aging: insights into biomarkers of healthy and pathological aging

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

The aging brain undergoes complex structural and functional transformations that differ- entiate healthy aging from pathological trajectories such as dementia. This study pioneers a multimodal neuroimaging and explainable deep learning framework to characterize brain aging, identify biomarkers of neurodegeneration, and elucidate the interplay between local anatomical changes and global network reorganization. Leveraging structural MRI-derived volumetrics and graph theory-based connectivity metrics extracted from resting-state fMRI from a heterogeneous cohort of cognitively healthy individuals and patients with Dementia attributed to Alzheimer’s and non-Alzheimer’s Disease, two predictive models were devel- oped: (1) a brain-age regression model to quantify deviations from normative aging patterns and (2) a dementia classification model to distinguish pathological from healthy aging. Both models achieved robust performance (mean absolute error = 0.68 years for controls in re- gression; F1-score = 0.93 for classification), with interpretable feature contributions revealed through SHAP (SHapley Additive exPlanations) analyses. Explainable AI (SHAP) analyses revealed non-linear feature interactions and highlighted established and novel neuroanatom- ical correlates of brain aging and dementia. By synthesizing computational innovation with clinical neuroimaging, this research provides actionable biomarkers for aging research, re- fines the conceptual framework of compensatory brain reorganization, and establishes a new contribution for AI-driven precision diagnostics in neurodegenerative disorders.

Description

https://orcid.org/0000-0001-5597-939X

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia