Low Overhead Host-Based IDS

dc.contributor.advisorMax Perera, Jorge Carloses
dc.contributor.committeememberRodriguez Morales, José Ramónes
dc.contributor.committeememberAguilar Coutiño, Artemioes
dc.contributor.departmentITESMen
dc.creatorAguilar Rodríguez, Ignacio J.en
dc.date.accessioned2015-08-17T11:21:19Zen
dc.date.available2015-08-17T11:21:19Zen
dc.date.issued01/07/2004
dc.description.abstractThe area of Intrusion Detection is very important these days. Companies have acquired more interest in having this type of systems beacuse of the importance that information has for them. Machine learning algorithms are being used along with IDSs as an efficient approach. For these reasons we work with this approach in this thesis, presenting from general to specific, the information of the models and types of IDSs, and some machine learning algorithms and some fusion rules for them, that can help achieving a good IDS. In this work, we focus on Host-based intrusion detection, and three machine learning algorithms, which are C4.5, RIPPER and PART. It is showed a method to reduce false alarm rates and with this, increasing the possibility of detecting true alarms when our system trigger them.
dc.identificatorCampo||7||33||3304||120302
dc.identifier.urihttp://hdl.handle.net/11285/572110en
dc.languageeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.subject.classificationArea::INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::LENGUAJES ALGORÍTMICOSes_Mx
dc.subject.disciplineIngeniería y Ciencias Aplicadas / Engineering & Applied Sciencesen
dc.subject.keywordIDSes
dc.subject.keywordHost-based IDSes
dc.subject.keywordLow Overhead IDSes
dc.subject.keywordTelecommunicationses
dc.subject.keywordElectronic Engineeringes
dc.titleLow Overhead Host-Based IDSen
dc.typeTesis de maestría
html.description.abstractThe area of Intrusion Detection is very important these days. Companies have acquired more interest in having this type of systems beacuse of the importance that information has for them. Machine learning algorithms are being used along with IDSs as an efficient approach. For these reasons we work with this approach in this thesis, presenting from general to specific, the information of the models and types of IDSs, and some machine learning algorithms and some fusion rules for them, that can help achieving a good IDS. In this work, we focus on Host-based intrusion detection, and three machine learning algorithms, which are C4.5, RIPPER and PART. It is showed a method to reduce false alarm rates and with this, increasing the possibility of detecting true alarms when our system trigger them.
refterms.dateFOA2018-03-16T09:09:29Z
refterms.dateFOA2018-03-16T09:09:29Z
thesis.degree.disciplineElectrónica, Computación, Información y Comunicacioneses
thesis.degree.levelMaster of Science in Electronic Engineering Major in Telecommunicationsen
thesis.degree.programCampus Monterreyes

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
DocsTec_1794.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
DocsTec_1794_1.pdf
Size:
36.69 KB
Format:
Adobe Portable Document Format
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia