Tesis de maestría

Low Overhead Host-Based IDS

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

The area of Intrusion Detection is very important these days. Companies have acquired more interest in having this type of systems beacuse of the importance that information has for them. Machine learning algorithms are being used along with IDSs as an efficient approach. For these reasons we work with this approach in this thesis, presenting from general to specific, the information of the models and types of IDSs, and some machine learning algorithms and some fusion rules for them, that can help achieving a good IDS. In this work, we focus on Host-based intrusion detection, and three machine learning algorithms, which are C4.5, RIPPER and PART. It is showed a method to reduce false alarm rates and with this, increasing the possibility of detecting true alarms when our system trigger them.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia