A prompt assisted image enhancement model using BERT classifier and modified LMSPEC and STTN techniques for endoscopic images

dc.audience.educationlevelConsejeros/Counsellors
dc.audience.educationlevelEmpresas/Companies
dc.audience.educationlevelPúblico en general/General public
dc.contributor.advisorOchoa Ruiz, Gilberto
dc.contributor.authorCerriteño Magaña, Javier
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberSánchez Ante, Gildardo
dc.contributor.committeememberAlfaro Ponce, Mariel
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2024-11-07
dc.date.accessioned2025-01-19T02:09:41Z
dc.date.issued2024-12
dc.descriptionhttps://orcid.org/0000-0002-9896-8727
dc.description.abstractThis document presents a research thesis for the Master in Computer Science (MCCi) degree at Tecnologico de Monterrey. The field of medical imaging, particularly in endoscopy, has seen significant advancements in image enhancement techniques aimed at improving the clarity and interpretability of captured images. Numerous models and methodologies have been developed to enhance medical images, ranging from traditional algorithms to complex deep learning frameworks. However, the effective implementation of these techniques often requires substantial expertise in computer science and image processing, which may pose a barrier for medical professionals who primarily focus on clinical practice. This thesis presents a novel prompt-assisted image enhancement model that integrates the LMSPEC and STTN techniques, augmented by BERT models equipped with added attention blocks. This innovative approach enables medical practitioners to specify desired image enhancements through natural language prompts, significantly simplifying the enhancement process. By interpreting and acting upon user-defined requests, the proposed model not only empowers clinicians with limited technical backgrounds to effectively enhance endoscopic images but also streamlines diagnostic workflows. To the best of our knowledge, this is the first dedicated prompt-assisted image enhancement model specifically tailored for medical imaging applications. Moreover, the architecture of the proposed model is designed with flexibility in mind, allowing for the seamless incorporation of future image enhancement models and techniques as they emerge. This adaptability ensures that the model remains relevant and effective as the field of medical imaging continues to evolve. The results of this research contribute to the ongoing effort to make advanced image processing technologies more accessible to medical professionals, thereby enhancing the quality of care provided to patients through improved diagnostic capabilities.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator331110
dc.identifier.citationCerriteño Magaña, J. (2024). A prompt assisted image enhancement model using BERT classifier and modified LMSPEC and STTN techniques for endoscopic images [Tesis maestría]. Instituo Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703072
dc.identifier.cvu1230802
dc.identifier.orcidhttps://orcid.org/0009-0006-1568-7396
dc.identifier.urihttps://hdl.handle.net/11285/703072
dc.identifier.urihttps://doi.org/10.60473/ritec.148
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::INSTRUMENTOS MÉDICOS
dc.subject.keywordImage enhancement
dc.subject.keywordDeep-learning
dc.subject.keywordPrompt
dc.subject.keywordBERT
dc.subject.keywordEndoscopy
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.subject.lcshMedicine
dc.titleA prompt assisted image enhancement model using BERT classifier and modified LMSPEC and STTN techniques for endoscopic images
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
CerritenoMagana_TesisMaestriapdfa.pdf
Size:
11.27 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CerritenoMagana_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
315.9 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CerritenoMagana_CartaAutorizacionpdfa.pdf
Size:
224 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia