Tesis de maestría

A prompt assisted image enhancement model using BERT classifier and modified LMSPEC and STTN techniques for endoscopic images

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

This document presents a research thesis for the Master in Computer Science (MCCi) degree at Tecnologico de Monterrey. The field of medical imaging, particularly in endoscopy, has seen significant advancements in image enhancement techniques aimed at improving the clarity and interpretability of captured images. Numerous models and methodologies have been developed to enhance medical images, ranging from traditional algorithms to complex deep learning frameworks. However, the effective implementation of these techniques often requires substantial expertise in computer science and image processing, which may pose a barrier for medical professionals who primarily focus on clinical practice. This thesis presents a novel prompt-assisted image enhancement model that integrates the LMSPEC and STTN techniques, augmented by BERT models equipped with added attention blocks. This innovative approach enables medical practitioners to specify desired image enhancements through natural language prompts, significantly simplifying the enhancement process. By interpreting and acting upon user-defined requests, the proposed model not only empowers clinicians with limited technical backgrounds to effectively enhance endoscopic images but also streamlines diagnostic workflows. To the best of our knowledge, this is the first dedicated prompt-assisted image enhancement model specifically tailored for medical imaging applications. Moreover, the architecture of the proposed model is designed with flexibility in mind, allowing for the seamless incorporation of future image enhancement models and techniques as they emerge. This adaptability ensures that the model remains relevant and effective as the field of medical imaging continues to evolve. The results of this research contribute to the ongoing effort to make advanced image processing technologies more accessible to medical professionals, thereby enhancing the quality of care provided to patients through improved diagnostic capabilities.

Description

https://orcid.org/0000-0002-9896-8727

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia