Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorHajiaghaei Keshteli, Mostafa
dc.contributor.authorFamilsamavati, Sajad
dc.contributor.catalogeremiggomez, emimmayorquin
dc.contributor.committeememberGuadalupe Villarreal Marroquín, María
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorSmith Cornejo, Neale Ricardo
dc.date.accepted2024-06-15
dc.date.accessioned2025-05-09T22:58:56Z
dc.date.embargoenddate2025-06-15
dc.date.issued2023
dc.descriptionhttps://orcid.org/0000-0002-9988-2626es_MX
dc.description.abstractThis study investigates the efficacy of advanced DL models, specifically Bi-GRU, LSTM, and Bi-LSTM, for predicting maritime vessel trajectories using AIS data. The study focuses on doing comparative analysis of prediction accuracy in high-traffic maritime environments, particularly the Port of Manzanillo. Comprehensive AIS data preprocessing, feature engineering, and normalization were conducted to prepare the data for model training. The Bi-GRU model emerged as the most effective, demonstrating superior performance with the lowest test loss, MAE, and MSE, highlighting its capability in capturing sequential dependencies in vessel trajectories. The research contributes significantly to maritime traffic management by offering a predictive framework that enhances safety and efficiency in dynamic maritime operations. Future research directions include integrating additional data sources and extending model applications across various maritime regions.es_MX
dc.description.degreeMaster of Science In Engineeringes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3319||331902es_MX
dc.identifier.citationFamilsamavati, S. (2024). Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703639
dc.identifier.cvu1246845es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-4769-6554es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703639
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.embargoreasonPeriodo predeterminado para revisión de contenido susceptible de protección, patente o comercializaciónes_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA NAVAL::BARCOSes_MX
dc.subject.keywordAutomatic Identification Systemes_MX
dc.subject.keywordLSTMes_MX
dc.subject.keywordGRUes_MX
dc.subject.keywordDeep learninges_MX
dc.subject.keywordTrajectory predictiones_MX
dc.subject.lcshNaval Sciencees_MX
dc.titleAdvanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system dataes_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Familsamavati_TesisMaestria.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
Familsamavati_CartaAutorizacion.pdf
Size:
170.58 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
Familsamavati_FirmasActadeGrado.pdf
Size:
207.75 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia