Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data
| dc.audience.educationlevel | Investigadores/Researchers | |
| dc.audience.educationlevel | Estudiantes/Students | |
| dc.audience.educationlevel | Otros/Other | |
| dc.contributor.advisor | Hajiaghaei Keshteli, Mostafa | |
| dc.contributor.author | Familsamavati, Sajad | |
| dc.contributor.cataloger | emiggomez, emimmayorquin | |
| dc.contributor.committeemember | Guadalupe Villarreal Marroquín, María | |
| dc.contributor.department | School of Engineering and Sciences | es_MX |
| dc.contributor.institution | Campus Monterrey | es_MX |
| dc.contributor.mentor | Smith Cornejo, Neale Ricardo | |
| dc.date.accepted | 2024-06-15 | |
| dc.date.accessioned | 2025-05-09T22:58:56Z | |
| dc.date.embargoenddate | 2025-06-15 | |
| dc.date.issued | 2023 | |
| dc.description | https://orcid.org/0000-0002-9988-2626 | es_MX |
| dc.description.abstract | This study investigates the efficacy of advanced DL models, specifically Bi-GRU, LSTM, and Bi-LSTM, for predicting maritime vessel trajectories using AIS data. The study focuses on doing comparative analysis of prediction accuracy in high-traffic maritime environments, particularly the Port of Manzanillo. Comprehensive AIS data preprocessing, feature engineering, and normalization were conducted to prepare the data for model training. The Bi-GRU model emerged as the most effective, demonstrating superior performance with the lowest test loss, MAE, and MSE, highlighting its capability in capturing sequential dependencies in vessel trajectories. The research contributes significantly to maritime traffic management by offering a predictive framework that enhances safety and efficiency in dynamic maritime operations. Future research directions include integrating additional data sources and extending model applications across various maritime regions. | es_MX |
| dc.description.degree | Master of Science In Engineering | es_MX |
| dc.format.medium | Texto | es_MX |
| dc.identificator | 7||33||3319||331902 | es_MX |
| dc.identifier.citation | Familsamavati, S. (2024). Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703639 | |
| dc.identifier.cvu | 1246845 | es_MX |
| dc.identifier.orcid | https://orcid.org/0000-0003-4769-6554 | es_MX |
| dc.identifier.uri | https://hdl.handle.net/11285/703639 | |
| dc.language.iso | eng | es_MX |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
| dc.relation | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation | CONAHCYT | |
| dc.relation.isFormatOf | publishedVersion | es_MX |
| dc.rights | openAccess | es_MX |
| dc.rights.embargoreason | Periodo predeterminado para revisión de contenido susceptible de protección, patente o comercialización | es_MX |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA NAVAL::BARCOS | es_MX |
| dc.subject.keyword | Automatic Identification System | es_MX |
| dc.subject.keyword | LSTM | es_MX |
| dc.subject.keyword | GRU | es_MX |
| dc.subject.keyword | Deep learning | es_MX |
| dc.subject.keyword | Trajectory prediction | es_MX |
| dc.subject.lcsh | Naval Science | es_MX |
| dc.title | Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data | es_MX |
| dc.type | Tesis de Maestría / master Thesis | es_MX |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- Familsamavati_TesisMaestria.pdf
- Size:
- 2.42 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- Familsamavati_CartaAutorizacion.pdf
- Size:
- 170.58 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
Loading...
- Name:
- Familsamavati_FirmasActadeGrado.pdf
- Size:
- 207.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- Firmas Acta de Grado
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

