Tesis de maestría / master thesis

Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

This study investigates the efficacy of advanced DL models, specifically Bi-GRU, LSTM, and Bi-LSTM, for predicting maritime vessel trajectories using AIS data. The study focuses on doing comparative analysis of prediction accuracy in high-traffic maritime environments, particularly the Port of Manzanillo. Comprehensive AIS data preprocessing, feature engineering, and normalization were conducted to prepare the data for model training. The Bi-GRU model emerged as the most effective, demonstrating superior performance with the lowest test loss, MAE, and MSE, highlighting its capability in capturing sequential dependencies in vessel trajectories. The research contributes significantly to maritime traffic management by offering a predictive framework that enhances safety and efficiency in dynamic maritime operations. Future research directions include integrating additional data sources and extending model applications across various maritime regions.

Description

https://orcid.org/0000-0002-9988-2626

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia