Advanced deep learning approaches for maritime trajectory prediction leveraging automatic identification system data
Citation
Share
Abstract
This study investigates the efficacy of advanced DL models, specifically Bi-GRU, LSTM, and Bi-LSTM, for predicting maritime vessel trajectories using AIS data. The study focuses on doing comparative analysis of prediction accuracy in high-traffic maritime environments, particularly the Port of Manzanillo. Comprehensive AIS data preprocessing, feature engineering, and normalization were conducted to prepare the data for model training. The Bi-GRU model emerged as the most effective, demonstrating superior performance with the lowest test loss, MAE, and MSE, highlighting its capability in capturing sequential dependencies in vessel trajectories. The research contributes significantly to maritime traffic management by offering a predictive framework that enhances safety and efficiency in dynamic maritime operations. Future research directions include integrating additional data sources and extending model applications across various maritime regions.
Description
https://orcid.org/0000-0002-9988-2626