Vision system for quality inspection of automotive parts based on non-defective samples

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorAhuett Garza, Horacio
dc.contributor.authorVázquez Nava, Alberto
dc.contributor.catalogerpuelquioes_MX
dc.contributor.committeememberOrta Castañón, Pedro Antonio
dc.contributor.committeememberUrbina Coronado, Pedro Daniel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accepted2021-06-11
dc.date.accessioned2022-06-02T14:58:48Z
dc.date.available2022-06-02T14:58:48Z
dc.date.created2021
dc.date.issued2021-06-11
dc.description.abstractNowadays, companies in the automotive industry focus on delivering high-quality products to their customers, however, this task tends to be more complex as new car models emerge because new quality requirements must be learned. Currently in some companies, vision systems are used for the part quality inspection process, however, their learning process requires many correct and defective data to generate better predictions. Although it is possible to learn from correct samples, it is difficult to learn from defective parts because they are difficult to find in a company with strict quality standards. In this work, the implementation of machine learning classifier algorithms is proposed to detect correct and defective samples of different part types from the learning of only samples that meet quality standards. The feature extraction from images corresponding to suspension control arms and engine front covers was carried out, then a data augmentation process was applied to be analyzed by classifying algorithms in two stages: Part Identification and Geometric Quality Inspection. As a result, it was obtained that the Support Vector Machine classifier was the best algorithm in both stages, resulting in 100.0% accuracy in identifying the parts, 96.0% accuracy in detecting defective suspension control arms and 100.0% accuracy in finding defective front cover arms.es_MX
dc.description.degreeMaster of Science in Manufacturing Systemses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3310||331003es_MX
dc.identifier.citationVázquez Nava, A. (2021). Vision system for quality inspection of automotive parts based on non-defective samples. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu1006918es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648442
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA INDUSTRIAL::PROCESOS INDUSTRIALESes_MX
dc.subject.keywordQuality inspectiones_MX
dc.subject.keywordMachine learninges_MX
dc.subject.keywordData augmentationes_MX
dc.subject.keywordVision systemes_MX
dc.subject.lcshSciencees_MX
dc.titleVision system for quality inspection of automotive parts based on non-defective sampleses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Tesis_AlbertoVázquezNava.pdf
Size:
6.9 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis.pdf
Size:
226.91 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización
Loading...
Thumbnail Image
Name:
Firmas_AlbertoVázquezNava.pdf
Size:
377.73 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas
Loading...
Thumbnail Image
Name:
Autoria_AlbertoVázquezNava.pdf
Size:
220.69 KB
Format:
Adobe Portable Document Format
Description:
Carta autoria

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia