Tesis de maestría

Vision system for quality inspection of automotive parts based on non-defective samples

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

Nowadays, companies in the automotive industry focus on delivering high-quality products to their customers, however, this task tends to be more complex as new car models emerge because new quality requirements must be learned. Currently in some companies, vision systems are used for the part quality inspection process, however, their learning process requires many correct and defective data to generate better predictions. Although it is possible to learn from correct samples, it is difficult to learn from defective parts because they are difficult to find in a company with strict quality standards. In this work, the implementation of machine learning classifier algorithms is proposed to detect correct and defective samples of different part types from the learning of only samples that meet quality standards. The feature extraction from images corresponding to suspension control arms and engine front covers was carried out, then a data augmentation process was applied to be analyzed by classifying algorithms in two stages: Part Identification and Geometric Quality Inspection. As a result, it was obtained that the Support Vector Machine classifier was the best algorithm in both stages, resulting in 100.0% accuracy in identifying the parts, 96.0% accuracy in detecting defective suspension control arms and 100.0% accuracy in finding defective front cover arms.

Collections

Loading...

Document viewer

Select a file to preview:
Reload

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia