Interpretable classification of proteinopathies with a convolutional neural network pipeline using transfer learning and validation against post-mortem clinical cases of alzheimer’s disease and progressive supranuclear palsy using biomarkers with tau polypeptide

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorCantoral Ceballos, José Antonio
dc.contributor.authorDíaz Gómez, Liliana
dc.contributor.catalogerpuemcuervo, emipsanchezes_MX
dc.contributor.committeememberGutiérrez Rodríguez, Andres Eduardo
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberSosa Hernández, Victor Adrián
dc.contributor.committeememberCastañeda Miranda, Alejandro
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorOntiveros Torres, Miguel Angel
dc.creatorCANTORAL CEBALLOS, JOSE ANTONIO; 261286
dc.date.accepted2022-12
dc.date.accessioned2023-09-28T23:13:18Z
dc.date.available2023-09-28T23:13:18Z
dc.date.issued2022-12
dc.description.abstractNeurodegenerative diseases, tauopathies, constitute a serious global health problem. The etiology of these diseases is unclear and an increase in their incidence has been projected in the next 30 years. Therefore, the study of the molecular mechanisms that detonate these neurodegenerative processes is very relevant. Classification of neurodegenerative diseases using Machine and Deep Learning algorithms has been widely studied for medical imaging such as Magnetic Resonance Imaging. However, post-mortem immunofluorescence imaging studies of the brains of patients have not yet been used for this purpose. These studies may represent a valuable tool for monitoring aberrant chemical changes or pathological post-translational modifications of the Tau polypeptide. We propose a Convolutional Neural Network pipeline for the classification of Tau pathology of Alzheimer’s disease and Progressive Supranuclear Palsy by analyzing post-mortem immunofluorescence images with different Tau biomarkers performed by models generated with the architecture ResNet-IFT using Transfer Learning. These models’ outputs were interpreted by interpretability algorithms Guided Grad-CAM and Occlusion Analysis. To determine the best classifier, four different architectures were tested. We demonstrated that our design was able to classify diseases with an accuracy of 98.41% on average whilst providing an interpretation of the proper classification involving different structural patterns in the immunoreactivity of the Tau protein in neurofibrillary tangles present in the brains of patients with Progressive Supranuclear Palsy and Alzheimer’s disease.es_MX
dc.description.degreeMaster of Science in Computational Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120320es_MX
dc.identifier.citationDiaz Gomez, L. (2022). Interpretable classification of proteinopathies with a convolutional neural network pipeline using transfer learning and validation against post-mortem clinical cases of alzheimer’s disease and progressive supranuclear palsy using biomarkers with tau polypeptide. [Tesis Maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/651234es_MX
dc.identifier.cvu1037287es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-7389-1199es_MX
dc.identifier.urihttps://hdl.handle.net/11285/651234
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICOes_MX
dc.subject.keywordTauopathieses_MX
dc.subject.keywordConvolutional Neural Networkses_MX
dc.subject.keywordGuided Grad-CAMes_MX
dc.subject.keywordOcclusion Analysises_MX
dc.subject.keywordNeurodegenerative diseaseses_MX
dc.subject.lcshTechnologyes_MX
dc.titleInterpretable classification of proteinopathies with a convolutional neural network pipeline using transfer learning and validation against post-mortem clinical cases of alzheimer’s disease and progressive supranuclear palsy using biomarkers with tau polypeptidees_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
DiazGomez_TesisMaestriapdfa.pdf
Size:
14.53 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
DiazGomez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
404.03 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
FORMATO DE DECLARACION DE ACUERDO PARA USO DE OBRA.pdf
Size:
318.57 KB
Format:
Adobe Portable Document Format
Description:
Agreement to Thesis use

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia