Component Detection based on Mask R CNN
| dc.audience.educationlevel | Estudiantes/Students | |
| dc.audience.educationlevel | Otros/Other | |
| dc.contributor.advisor | Morales, Rubén | |
| dc.contributor.author | Charles Garza, Daniel | |
| dc.contributor.cataloger | emimmayorquin | |
| dc.contributor.committeemember | Vallejo Guevara, Antonio | |
| dc.contributor.committeemember | Guedea Elizalde, Federico | |
| dc.contributor.department | Escuela de Ingeniería y Ciencias | es_MX |
| dc.contributor.institution | Campus Monterrey | es_MX |
| dc.date.accepted | 2023-12-04 | |
| dc.date.accessioned | 2025-04-04T00:14:37Z | |
| dc.date.issued | 2023 | |
| dc.description | https://orcid.org/0000-0003-0498-1566 | |
| dc.description.abstract | This thesis delves into the evolution and utilization of deep learning methodologies in the specific context of object detection and segmentation within the manufacturing industry. It thoroughly examines several state-of-the-art object detection techniques, including YOLO, RCNN, Fast R-CNN, etc. These methods are explored in detail, assessing their effectiveness and applicability in complex object identification and classification tasks. The study then focuses on Mask R-CNN, a method chosen for its outstanding performance in object segmentation and identification; especially, in cluttered and unstructured environments common in manufacturing settings. | es_MX |
| dc.description.degree | Master of Science in Manufacturing Systems | es_MX |
| dc.format.medium | Texto | es_MX |
| dc.identificator | 7||531103 | |
| dc.identifier.citation | Charles Garza, D. (2023). Component Detection based on Mask R CNN. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperdo de: https://hdl.handle.net/11285/703464 | |
| dc.identifier.cvu | 1156969 | es_MX |
| dc.identifier.orcid | 0009-0008-6561-7876 | es_MX |
| dc.identifier.uri | https://hdl.handle.net/11285/703464 | |
| dc.language.iso | eng | es_MX |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
| dc.relation.isFormatOf | publishedVersion | es_MX |
| dc.rights | openAccess | es_MX |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA INDUSTRIAL::ESTUDIOS INDUSTRIALES | |
| dc.subject.keyword | Mask R-CNN | es_MX |
| dc.subject.keyword | Deep learning | es_MX |
| dc.subject.keyword | Vision system | es_MX |
| dc.subject.keyword | Object detection | es_MX |
| dc.subject.keyword | Object segmentation | es_MX |
| dc.subject.lcsh | Science | es_MX |
| dc.title | Component Detection based on Mask R CNN | es_MX |
| dc.type | Tesis de Maestría / master Thesis | es_MX |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- CharlesGarza_TesisMaestria.pdf
- Size:
- 69.94 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- CharlesGarza_CartaAutorizacion.pdf
- Size:
- 65.52 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
Loading...
- Name:
- CharlesGarza_FirmasActadeGrado_CartaAutorizacion.pdf
- Size:
- 191.95 KB
- Format:
- Adobe Portable Document Format
- Description:
- Firmas Acta de Grado_Carta Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

