Analyzing factors that impact alumni income with a machine learning approach

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorGómez Cravioto, Daniela Alejandra
dc.contributor.catalogerpuelquioes_MX
dc.contributor.committeememberCeballos Cancino, Héctor
dc.contributor.committeememberLópez Guajardo, Rafael
dc.contributor.committeememberCeballos Cancino, Héctor Gibrán
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorPreciado Arreola, José Luis
dc.date.accepted2021-05-14
dc.date.accessioned2023-07-13T22:09:45Z
dc.date.available2023-07-13T22:09:45Z
dc.date.created2021-06
dc.date.issued2021-05
dc.description.abstractThis thesis presents an exploration of different machine-learning algorithms and different approaches for predicting alumni income. The aim is to obtain insights regarding the strongest predictors for income and a ``high" earners class. The study examines the alumni sample data obtained from a survey from Tec de Monterrey, a multi-campus Mexican private university. Survey results encompass 17,898 observations before cleaning and preprocessing and 12,275 observations after this. The dataset includes values for income and a large set of independent variables, including demographic and occupational attributes of the former students and academic attributes from the institution's history. For the problem of income prediction, there have been several attempts in both social science and econometric studies. However, this study investigates whether the accuracy of conventional algorithms in econometric research to predict income can be improved with a data science approach. Furthermore, we present insights obtained with explainable AI techniques. The results show that the Gradient Boosting Model outperformed the parametric models, Linear Regression and Logistic Regression, in predicting the current income of alumni with statistically significant results (p<0.05) in three different approaches: OLS regression, Multi-class Classification, and Binary Classification. The study also identified that for predicting the alum's first income after graduation, the Linear and Logistic Regression models were the most accurate methods, as the non-parametric models did not show a significant improvement. Succinctly, we identified that age, gender, working hours per week, their first income after graduation, and those factors related to their job position and their firm contributed to explaining their income. Simultaneously, post-graduation education and family background had an insignificant contribution to the model. In addition, the results, which showed a gender wage gap indicate that further work is required to enable equality in Mexico.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120310es_MX
dc.identifier.citationGómez Cravioto, D.(2021). Analyzing factors that impact alumni income with a machine learning approach. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu972191es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-9286-9480es_MX
dc.identifier.urihttps://hdl.handle.net/11285/651027
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.urlhttps://doi.org/10.1109/CSASE48920.2020.9142069es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ENSEÑANZA CON AYUDA DE ORDENADORes_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordEducational Data Mininges_MX
dc.subject.keywordAlumni Survey Analysises_MX
dc.subject.keywordIncome Predictiones_MX
dc.subject.keywordExplainable AIes_MX
dc.subject.lcshSciencees_MX
dc.titleAnalyzing factors that impact alumni income with a machine learning approaches_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Thesis_Final_Daniela.pdf
Size:
7.7 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría PDF
Loading...
Thumbnail Image
Name:
Formato_Copyright_Tesis_Daniela.pdf
Size:
696.58 KB
Format:
Adobe Portable Document Format
Description:
Copyright Format
Loading...
Thumbnail Image
Name:
Firmas_Daniela.pdf
Size:
567.31 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia