One step closer to mental health: resilience to mental stress index in the face of analytical problems, a machine learning approach

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorTrejo Rodríguez, Luis Angel
dc.contributor.authorDíaz Ramos, Ramón Eduardo
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberMedina Pérez, Miguel Angel
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberFigueroa López, Carlos Gonzalo
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accepted2022-06-01
dc.date.accessioned2022-06-13T18:44:49Z
dc.date.available2022-06-13T18:44:49Z
dc.date.created2021-06
dc.date.embargoenddate2022-06-01
dc.date.issued2021-06-01
dc.descriptionhttps://orcid.org/0000-0001-9741-4581es_MX
dc.description.abstractStress and depression are two major topics of concern for higher education institutions. Studies have shown how mental health problems can decrease students' ability to function efficiently during their education life and how depression can risk their physical well-being. To aid students in coping with the challenging experience of higher education and therefore enable them to perform better in stressful situations post-graduation, researchers recommend increasing their level of resilience. In an attempt to measure a person's resilience, previous studies have developed and analyzed self-rating questionnaires. While these studies have provided a way to assess people's psychological responses and provided a significant amount of insight, they do not provide an objective measurement for resilience to mental stress. There have been related studies that have evaluated physiological signals in individuals and have identified relationships with people's stress. Based on previous literature and applying machine learning, this thesis aims to demonstrate the feasibility of measuring an individual's resilience to mental stress and proposes a Resilience to Mental Stress Index (RMSI). In addition to this, this thesis presents an experiment's methodology to collect physiological and psychological data using smartwatch embedded sensors and psychological tools to study depression prediction. This research performed data analysis of 71 individuals subjected to a 10-minute psychophysiological test to study resilience to mental stress. The data collected considers five physiological features: (a) muscle response (electromyography), (b) blood volume pulse, (c) breathing rate, (d) peripheral temperature, and (e)skin conductance. We utilized unsupervised learning techniques to visualize and identify the relationship between these feature variability. As a result of the analysis, we created three different methods for the RMSI. The results' analysis between the different methods showed no statistically significant difference (p>0.05). However, we recommend using the Mahalanobis distance (MD) method because of its relationship with the validation methods. Even though there exists no standard method to quantify resilience to mental stress, our results indicate a positive relationship to the Resilience in Mexicans (RESI-M) psychological tool. For the study of depression prediction, during this research, five variables were selected for the study: (a) personality traits, (b) RMSI, (c) heart rate variability (HRV), and (d) sleeping disorders. To collect these variables, we developed a methodological framework and built a mobile application. We hope that this research serves as a solid baseline to understand resilience to mental stress and collect valuable information to predict depression.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120312es_MX
dc.identifier.citationDíaz Ramos, R. E. (2021). One step closer to mental health: resilience to mental stress index in the face of analytical problems, a machine learning approach [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu1008475es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-7324-7205es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648471
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfdraftes_MX
dc.rightsembargoedAccesses_MX
dc.rights.embargoreasonUn articulo científico se esta publicando con el contenido de esta tesis.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::BANCOS DE DATOSes_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordStresses_MX
dc.subject.keywordDepressiones_MX
dc.subject.keywordResilience to Mental Stress Indexes_MX
dc.subject.keywordCollection of Depression Dataes_MX
dc.subject.keywordUnsupervised Learninges_MX
dc.subject.lcshTechnologyes_MX
dc.titleOne step closer to mental health: resilience to mental stress index in the face of analytical problems, a machine learning approaches_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Thesis_Final_Ramon.pdf
Size:
5.86 MB
Format:
Adobe Portable Document Format
Description:
Manuscript
Loading...
Thumbnail Image
Name:
Formato_Copyright_Tesis_Ramon.pdf
Size:
651.7 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorizacion

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia