Defect detection with predictive models in the galvanizing process

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorPreciado Arreola, José Luis
dc.contributor.authorVillareal Garza, Diego
dc.contributor.catalogertolmquevedoes_MX
dc.contributor.committeememberTercero Gómez, Víctor Gustavo
dc.contributor.committeememberChee González, Carlos Arnoldo
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creator
dc.date.accepted2020-12-04
dc.date.accessioned2022-02-21T19:36:02Z
dc.date.available2022-02-21T19:36:02Z
dc.date.created2020
dc.date.issued2020-12-04
dc.description0000-0003-2851-3839es_MX
dc.description.abstractIn the steel industry, having better control over the final mechanical properties of the steel coils is something highly desired by companies, as this would allow them to reduce the number of defective products they manufacture and reduce the costs associated with them. In a galvanizing line, modeling the yield strength and elongation properties of steel coils can be done before subjecting the coils to the galvanizing process, therefore preventing the waste of zinc, and improving the overall quality control of the line. In this thesis, an ensemble of two quantile random forest regressors was employed to predict the mechanical properties of galvanized steel coils using real-life data from a steel manufacturing company in order to identify defective and non-defective products. The ensemble was designed with goal-specific components in order to optimize the false negative rate and false positive rate of the model. Out of the six clusters of data built from the dataset, four were properly modeled with this approach, while one was best modeled with an individual quantile random forest regressor. Results revealed that a combination of chemistry, segmentation, previous processes, and galvanizing process parameters are required to effectively predict the yield strength and elongation properties. Additional testing of this ensemble model in different industrial contexts and with different performance metrics is recommended to further validate its efficacy.es_MX
dc.description.degreeMaestría en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3312||331208es_MX
dc.identifier.citationVillarreal, D. (2020). Defect detection with predictive models in the galvanizing process (Tesis de Maestría. Instituto Tecnológico y de Estudios Superiores de Monterrey). Recuperado de: https://hdl.handle.net/11285/645037es_MX
dc.identifier.cvu963775es_MX
dc.identifier.urihttps://hdl.handle.net/11285/645037
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-11-24
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE MATERIALES::PROPIEDADES DE LOS MATERIALESes_MX
dc.subject.keywordEnsemble modelses_MX
dc.subject.keywordMachine learninges_MX
dc.subject.keywordPredictive modelses_MX
dc.subject.keywordMechanical propertieses_MX
dc.subject.keywordGalvanized steeles_MX
dc.subject.lcshTechnologyes_MX
dc.titleDefect detection with predictive models in the galvanizing processes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Thesis_MCI_Diego_Villarreal_A01192613.pdf
Size:
4.4 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
514.7 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización
Loading...
Thumbnail Image
Name:
Hoja de firmas.pdf
Size:
687.72 KB
Format:
Adobe Portable Document Format
Description:
Portada y hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia