Machine learning model for road asphalt monitoring system: vibration-based approach

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorZareei, Mahdi
dc.contributor.authorLópez Castañeda, Carlos Alonzo
dc.contributor.catalogerpuemcuervo, emipsanchezes_MX
dc.contributor.committeememberRoshan Biswal, Rajesh
dc.contributor.committeememberMeza Ruiz, Ivan Vladimir
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorZAREEI, MAHDI; 822705
dc.date.accepted2022-12-06
dc.date.accessioned2023-03-24T20:02:29Z
dc.date.available2023-03-24T20:02:29Z
dc.date.issued2022-12
dc.description.abstractTo achieve safe and correct driving, it is necessary to have a surveillance plan and the maintenance of highways and roads, in order to maintain a good infrastructure. Mexico has a paved and unpaved network of 780, 511 km, of which is paved 174, 779 km. According to statistics from the INEGI, in 2019, there were 9,318 accidents due to poor road conditions. There are several types of breakdowns on any paved surface, and they may differ depending on the country. For example, potholes, cracks, and patches are some road surface damages essential to assess in Mexico. In 2020, INEGI presents that 96.8\% of the population identified the issue of potholes in streets and avenues, as the problem with the highest frequency nationwide, above crime. Thus, the conditions of our roads are of deep concern for the population. Different forms of road condition monitoring are proposed in the last years by specially designed instruments, using cameras, lasers, which require time and money and can only cover a limited proportion of the road network. Analogous to a video feed visually inspecting the asphalt's surface, a vibration-based system measures the ground conditions based on mechanical feedback from a vehicle. Different road anomalies, including potholes, cracks and ruts in the surface, create forces on the car, the frequency and magnitude of the forces will depend a lot on the type of anomaly. After we investigated different related works, this thesis is going to build on some of their aspects, and make a mix of others. The idea of dividing into three different categories for the classification of the roads, and the usage of supervised learning for road surface quality and anomaly detection. Regarding data collection, it was done through a phone with an Android system and an application created specifically for this job. This thesis proposes a pothole detection model using a vibration base method, using built-in vibration sensors in smartphones. We collected road condition data in Mexico City using a dedicated vehicle and smartphones with a purpose-built mobile application designed for this study, splitting the data into: bump, bump, normal. A processing method was applied to the collected data, and features were extracted, then classified with a neural network. The results indicated that using only the subset of two of the three selected event types, together with their six characteristics, they outperformed other subsets in identifying potholes. Our neural network classifier showed classification performance, with an accuracy of 98\%.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120312es_MX
dc.identifier.citationLópez Castañeda, C. A. (2022). Machine learning model for road asphalt monitoring system: vibration-based approach (Tesis Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650334es_MX
dc.identifier.cvu1111520es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-6334-3073es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650334
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::BANCOS DE DATOSes_MX
dc.subject.keywordBumpes_MX
dc.subject.keywordVibrationes_MX
dc.subject.keywordPotholees_MX
dc.subject.keywordAccelerometeres_MX
dc.subject.keywordGyroscopees_MX
dc.subject.keywordNeural-networkes_MX
dc.subject.lcshTechnologyes_MX
dc.titleMachine learning model for road asphalt monitoring system: vibration-based approaches_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
LopezCastaneda_TesisMaestriapdfa.pdf
Size:
20.56 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
LopezCastaneda_ActadeGradoDeclaracionAutoriapdfa.pdf
Size:
426.04 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON_221206_160053.pdf
Size:
136.99 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia