Prognosis using Deep Learning in CoViD-19 patients

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorMorales Menéndez, Rubén
dc.contributor.authorGuadiana Álvarez, José Luis
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberVargas Martínez, Adriana
dc.contributor.committeememberRamírez Mendoza, Ricardo Ambrocio
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorRojas Flores, Etna Aurora
dc.creatorMORALES MENENDEZ, RUBEN; 30452
dc.date.accessioned2022-02-06T01:15:21Z
dc.date.available2022-02-06T01:15:21Z
dc.date.created2020-11-30
dc.descriptionhttps://orcid.org/0000-0003-0498-1566es_MX
dc.description.abstractPrognostics study the prediction of an event before it happens, to enable efficient critical decision making. Over the past few years, it has gained a lot of research attention in many fields, i.e. manufacture, economics, and medicine. Particularly in medicine, prognostics are very useful for front line physicians to predict how a disease may affect a patient and react accordingly to save as many lives as possible. One clear example is the recently discovered Coronavirus Disease 2019 (CoViD-19). Because of its novelty, not nearly enough is known about the virus’ behaviour and Key Performance Indicators (KPIs) to asses a mortality prediction. However, using a lot of complex and expensive medical biomarkers could be impossible for many low budget hospitals. This motivates the development of a prediction model that not only maximizes performance, but does so using the least amount of biomarkers possible. For mortality risk prediction, falsely assuming that a patient has a low mortality risk is far more critical than the opposite. Therefore, false negative predictions should be prioritized over false positive ones. This research project proposes a CoViD-19 mortality risk calculator based on a Deep Learning model trained on a data set provided by the HM Hospitales from Madrid, Spain. A pre-processing strategy for unbalanced classes and feature selection is proposed. Benefit of using over-sampling and imputation techniques is evaluated. Also, an imputation method based on the K-Nearest Neighbor (KNN) algorithm for biomarker data is is proposed and its efficiency is evaluated. Results are compared against a Random Forest (RF) model while showing the trade-off between feature input space and the number of samples available. Results on the MPCD score show the proposed DL outperforms the proposed RF on every data set when evaluating even with an over-sampling technique. Finally, the proposed KNN method proves beneficial for data imputation, improving the model’s Recall score from 0:87 to 0:90.es_MX
dc.description.degreeMaestro en Ciencias con Especialidad en Sistemas de Manufacturaes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationGuadiana, J. L. (2020). Prognosis using Deep Learning in CoViD-19 patients (Tesis de Maestría). Tecnológico de Monterrey, Monterrey, Nuevo León, México. Recuperado de: https://hdl.handle.net/11285/644479es_MX
dc.identifier.cvu966493es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-8446-2450es_MX
dc.identifier.urihttps://hdl.handle.net/11285/644479
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-12-01
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordCoViD-19es_MX
dc.subject.keywordData Imputationes_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordMPCDes_MX
dc.subject.lcshSciencees_MX
dc.titlePrognosis using Deep Learning in CoViD-19 patientses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
GuadianaAlvarez_TrabajoTerminalEspecialidadPDFA.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format
Description:
Trabajo Terminal Especialidad
Loading...
Thumbnail Image
Name:
GuadianaAlvarez_ActadeGradoyDeclaraciondeAutoriaPDFA.pdf
Size:
884.89 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoria
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
220.63 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia