Unsupervised learning to profile emerging researchers in LATAM with Elsevier’s data

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEmpresas/Companies
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorFigueroa Castillo, Jesús Manuel
dc.contributor.catalogermtyahinojosa, emimmayorquin
dc.contributor.committeememberCeballos Cancino, Héctor Gibrán
dc.contributor.committeememberEstévez Bretón, Carlos Manuel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorHervert Escobar, Laura
dc.date.accepted2024-05
dc.date.accessioned2025-10-17T01:38:05Z
dc.date.embargoenddate2025-05
dc.date.issued2024-05
dc.descriptionhttps://orcid.org/0000-0003-0966-5685es_MX
dc.description.abstractThis proposal is being presented in Computer Science. High-impact researchers possess several key features based on their expertise; never theless, it takes time to establish themselves as leaders in their area. The objective of this research is to develop a model that can identify those outstanding researchers by discipline using indicators from the last five years of research and acknowledged databases such as Sco pus and Web of Science. Additionally, it will compare similarities across various disciplines to determine whether it is possible to predict researchers from one or more disciplines using the same model. The main objective of this research is to discover the characteristics that define a ”rising star” based on the concept of an early career researcher as a initial time window. It is important to mention that current metrics measure researchers’ performance through indicators known as H-index and its variants. However, these metrics often do not consider characteristics that differentiate one group from another. Through this unsupervised approach, we aim to f ind different groups that exist in LATAM to measure their characteristics more precisely and fairly, and to identify those high-impact researchers who may not be immediately apparent through indicators like the H-index. This thesis will demonstrate the process from data mining to the statistical analysis of the different groups.es_MX
dc.description.degreeMaster in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator1||12||1209||120903||120312
dc.identificator1||12||1209||120903es_MX
dc.identifier.citationFigueroa, J.M. (2024, May 30). Unsupervised Learning to profile Emerging Researchers in LATAM with Elsevier’s Data, Tec de Monterreyes_MX
dc.identifier.cvu1239176es_MX
dc.identifier.orcidhttps://orcid.org/0009-0006-7062-0266es_MX
dc.identifier.scopusid58999578800es_MX
dc.identifier.urihttps://hdl.handle.net/11285/704315
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsembargoedAccesses_MX
dc.rights.embargoreasonSe está buscando generar un artículo a partir de la tesises_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ESTADÍSTICA::ANÁLISIS DE DATOS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::LENGUAJES DE PROGRAMACIÓN
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ESTADÍSTICA::ANÁLISIS ESTADÍSTICO
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::BANCOS DE DATOS
dc.subject.keywordRising Stares_MX
dc.subject.keywordEarly Career Researcheres_MX
dc.subject.keywordElsevieres_MX
dc.subject.keywordScientometricses_MX
dc.subject.keywordUnsupervised Learninges_MX
dc.subject.keywordPerformance metricses_MX
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleUnsupervised learning to profile emerging researchers in LATAM with Elsevier’s data
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
FigueroaCastillo_TesisMaestría.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
FigueroaCastillo_TesisMaestriaOriginal.pdfa
Size:
3.26 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría Original
Loading...
Thumbnail Image
Name:
FigueroaCastillo_CartaAutorizacion.pdf
Size:
108.74 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización
Loading...
Thumbnail Image
Name:
FigueroaCastillo_FirmasActadeGradoDeclaraciondeAutoria.pdfa
Size:
568.4 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado Declaración de Autoría

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia