Deep learning for clothing classification, case study:thermal comfort

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorPonce Cruz, Pedro
dc.contributor.authorMedina Rosales, Adán
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberLópez Caudana, Edgar Omar
dc.contributor.committeememberRojas Hernández, Mario
dc.contributor.committeememberSoriano Avendaño, Luis Arturo
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Ciudad de Méxicoes_MX
dc.contributor.mentorMolina Gutiérrez, Arturo
dc.date.accepted2021-12-08
dc.date.accessioned2022-05-30T22:19:09Z
dc.date.available2022-05-30T22:19:09Z
dc.date.issued2021-11-23
dc.description.abstractImage classification algorithm has being in quick development over the last 10 years with a new algorithm appearing every year, this new algorithms aim to be faster and more accurate than its predecessors, so real time implementations for object classifiers are more frequent. However the solutions for problems are going to more complex problems leaving things such as clothing ensemble classification on the side. There are some proposed solutions on the recognition of clothing garments but all aim to a specific solution in the fashion industry for customer categorization or shopping proposals, however a more general approach which recognizes multiple clothing garments is missing, and a real time clothing ensemble detection could be implemented in several problems. One of such problems is the case study for this project were a CNN implementation is used in video testing to propose the solution for clothing insulation determination using the real time clothing ensemble detector and therefore have a more accurate thermal comfort value. The results proved that the implementation of the chosen CNN architecture could be used as a clothing ensemble detector in a real time implementation, however since a minimized version of the needed dataset was used to verify the viability of this proposal a more complete dataset needs to be created in order to improve the models performance. In general this proposal shows the comparison between come CNN architectures and the datasets available for the propose objectives, as well as the creation of a new dataset that can be successfully used to train the chosen CNN model and produce a real time clothing ensemble detector.es_MX
dc.description.degreeMaster of Engineering Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||330417es_MX
dc.identifier.citationMedina Rosales A.(2021). Deep learning for clothing classification, case study: thermal comfort [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.doihttps://doi.org/10.1109/E-TEMS51171.2021.9524900
dc.identifier.doihttps://doi.org/10.1109/E-TEMS51171.2021.9524889
dc.identifier.doihttps://link.springer.com/chapter/10.1007/978-3-030-70716-3_9
dc.identifier.orcidhttps://orcid.org/ 0000-0001-8769-0793es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648429
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REALes_MX
dc.subject.keywordComputeres_MX
dc.subject.keywordVisiones_MX
dc.subject.keywordClothinges_MX
dc.subject.keywordClassificationes_MX
dc.subject.keywordThermales_MX
dc.subject.keywordComfortes_MX
dc.subject.keywordReal-timees_MX
dc.subject.keywordYOLOes_MX
dc.subject.lcshTechnologyes_MX
dc.titleDeep learning for clothing classification, case study:thermal comfortes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
TEC_Thesis_Adan_Medina.pdf
Size:
31.05 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestria
Loading...
Thumbnail Image
Name:
autorización.jpg
Size:
417.49 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
Carta de autorización
Loading...
Thumbnail Image
Name:
Firmas_Adan_Medina.pdf
Size:
400.69 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia