Voice fraud mitigation: developing a deep learning system for detecting cloned voices in telephonic communications

dc.audience.educationlevelOtros/Other
dc.contributor.advisorMontesinos Silva, Luis Arturo
dc.contributor.authorVillicaña Ibargüengoyti, José Rubén
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberSantos Díaz, Alejandro
dc.contributor.committeememberMantilla Caeiros, Alfredo Víctor
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Ciudad de México
dc.date.accepted2024-12-03
dc.date.accessioned2025-01-07T20:25:08Z
dc.date.issued2024-12-03
dc.descriptionhttps://orcid.org/0000-0003-3976-4190
dc.description.abstractThis study addresses the increasing threat in recent years of voice fraud by cloned voices in phone calls. This problem can compromise personal security in many aspects. The primary goal of this work is to develop a deep learning-based detection system for distinguishing between real and cloned voices in Spanish, focusing on calls made over telephone lines. To achieve this, a dataset was generated from real and cloned audio samples in Spanish. The audios captured were simulated under various telephone codecs and noise levels. Two deep learning models, a convolutional neural network (which in this project is named Vanilla CNN) and a transfer learning (MobileNetV2) approach, were trained using spectrograms derived from the audio data. The results indicate a high accuracy in identifying real and cloned voices, reaching up to 99.97% accuracy. Also, many validations were performed under different types of noise and codecs included in the dataset. These findings highlight the effectiveness of the proposed architectures. Additionally, an ESP32 audio kit was integrated with Amazon Web Services to implement voice detection during phone calls. This study contributes to voice fraud detection research focused on the Spanish language.
dc.description.degreeMaster in Engineering Science
dc.format.mediumTexto
dc.identificator120304||120323
dc.identifier.citationVillicaña Ibargüengoyti, J. R. (2024). Voice fraud mitigation: developing a deep learning system for detecting cloned voices in telephonic communications [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702987
dc.identifier.cvu1276822
dc.identifier.orcidhttps://orcid.org/0009-0007-1061-075X
dc.identifier.urihttps://hdl.handle.net/11285/702987
dc.identifier.urihttps://doi.org/10.60473/ritec.63
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::LENGUAJES DE PROGRAMACIÓN
dc.subject.keywordVoice Cloning
dc.subject.keywordDeep Learning
dc.subject.keywordTelephonic Communications
dc.subject.keywordFraud Detection
dc.subject.keywordAudio Codification
dc.subject.lcshTechnology
dc.titleVoice fraud mitigation: developing a deep learning system for detecting cloned voices in telephonic communications
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
VillicanaIbarguengoytia_TesisMaestriapdfa.pdf
Size:
38.15 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
VillicanaIbarguengoytia_Carta Autorizaciónpdf.pdf
Size:
277.5 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
VillicañaIbargüengoytia_ActaGradoDeclaracionAutoria.pdf
Size:
626.72 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoria

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia