A comparison between Machine Learning models for OSA detection based on ECG signal

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorPonce Cruz, Pedro
dc.contributor.authorEspinosa Varela, Miguel Angel
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberPonce, Pedro
dc.contributor.committeememberRojas, Mario
dc.contributor.committeememberBorja, Vicente
dc.contributor.committeememberMata, Omar
dc.contributor.committeememberMolina, Arturo
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Ciudad de México
dc.contributor.mentorRojas Hernández, Mario
dc.date.accessioned2025-05-09T19:45:58Z
dc.date.issued2023-12-04
dc.description.abstractOSA is a one of the most common sleep disorders nowadays, which is diagnosed by a Polysomnography (PSG) study. Even though this is the golden standard to diagnose OSA, it is time consuming, very expensive and there are not many specialized centers to conduct it, this implies that fewer patients are diagnosed. The development of new solutions at a lower cost and in less time would allow more patients to be diagnosed and treated promptly. There are solutions that enable the diagnosis of OSA through monitoring signals from the human body, including an auto-diagnosis. However, these solutions do not aim to perform screening on the most significant parameters along with the best model for making predictions. The main objective of this tesis is to make a comparison between 27 Machine Learning (ML) models in order to find the best model to diagnose OSA. It also aims to find which are the most representative parameters in OSA detection. By doing a frequency-domain, time-domain and non-linear domain analysis to extract them from the RR intervals, and with a wilcoxon test and correlation matrix, select the most useful ones. The results showed that the best model was Support Vector Machine (SVM) with an accuracy, balanced accuracy, ROC AUC and F1 Score of 0.97. The most significant parameters found were: RR tri index, LF/HF ratio, alpha 2, HF\%, SDNN and RMSSD. This solution can be integrated into current clinical cases for a quick OSA diagnosis. Proposal does not aim to replace PSG for a complete and accurate diagnosis, but to be a pre diagnosis accessible to a larger number of patients. Health providers can implement this solution and reduce the number of patients in the waiting list. Also, this proposal would make research in OSA diagnosis more accessible and provide a framework that can be the starting point to other researchs.es_MX
dc.description.degreeMaster in Engineering Science
dc.format.mediumTexto
dc.identificator330406||330416||120323
dc.identifier.citationEspinosa, M. (2023). A comparison between Machine Learning models for OSA detection based on ECG signal. [Tesis de maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703635
dc.identifier.urihttps://hdl.handle.net/11285/703635
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfdraftes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ARQUITECTURA DE ORDENADORES
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::DISEÑO LÓGICO
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::LENGUAJES DE PROGRAMACIÓN
dc.subject.keywordOSAes_MX
dc.subject.keywordECGes_MX
dc.subject.keywordDiagnosises_MX
dc.subject.lcshTechnology
dc.titleA comparison between Machine Learning models for OSA detection based on ECG signales_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
EspinosaVarela_TesisMaestria.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
EspinosaVarela_CartaAutorizacion.pdf
Size:
105.96 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
EspinosaVarela_FirmasActadeGrado.pdf
Size:
461.26 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia