Characterisation of visitors and description of their navigation behaviour using web log mining techniques

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorMonroy Borja, Raúl
dc.contributor.authorHuidobro Espejel, Alicia
dc.contributor.catalogerhermlugo, emipsanchezes_MX
dc.contributor.committeememberLoyola González, Octavio
dc.contributor.committeememberGraff Guerrero, Mario
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorCervantes González, Bárbara
dc.creatorMONROY BORJA, RAUL; 12232
dc.date.accepted2021-02-10
dc.date.accessioned2021-09-19T22:04:36Z
dc.date.available2021-09-19T22:04:36Z
dc.date.created2021-02
dc.date.embargoenddate2022-02-10
dc.date.issued2021-02
dc.description0000-0002-3465-995Xes_MX
dc.description.abstractThe value of a company’s website depends on visitors performing actions that add value for the company. Those actions are called conversions. We present techniques for both characterising website visitors in terms of the conversions they make, and describing their navigation behaviour in an abstract way, with the aim of making them more amenable to interpretation. Existing web analytics techniques have not been designed to highlight the distinguishing characteristics of a class of visitors. There are no approaches for characterising classes of visitors that take into account specific business goals; further, the navigation behaviour of a visitor, let alone a class of visitors, is conveyed as a sequence of visited pages, without giving this an abstract meaning. In this thesis, we introduce a means of characterising website visitors. To find what the different segments of visitors have or do not have in common, we first separate visitor sessions in terms of conversions and then for each class we mine patterns to contrast one another. We also introduce a simplified description of visitor navigation behaviour. Our technique works by identifying subsequences of visited pages of common occurrence, called ``rules'', and then by shrinking a session replacing those rules with a symbol that is given a representative name. Further, we extended this to an entire class of visitors, creating a graph that collects the class sessions, summarising the class navigation behaviour and enabling an easier contrast of classes. Our results show that a few patterns are enough to characterise a visitor class; since each class is associated with a conversion, an expert can easily draw conclusions as to what makes two classes different from one another. Also, with our abstract representation, a session can be shrinked so that the behaviour of an entire visitor class can be depicted in a moderately small graph. Further work is concerned with incorporating information from other sales channels and completing the analysis provided by existing techniques.es_MX
dc.description.degreeMaestro en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304es_MX
dc.identifier.citationHuidobro Espejel, A. (2021). Characterisation of visitors and description of their navigation behaviour using web log mining techniques (Tesis de Maestría / master Thesis). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recperado de:https://hdl.handle.net/11285/638969es_MX
dc.identifier.cvu957562es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-9798-6077es_MX
dc.identifier.urihttps://hdl.handle.net/11285/638969
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsembargoedAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORESes_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keywordweb log mininges_MX
dc.subject.keywordweb analyticses_MX
dc.subject.keywordclickstream analysises_MX
dc.subject.keywordgraph analysises_MX
dc.subject.keywordcontrast patternses_MX
dc.subject.keywordpbc4cipes_MX
dc.subject.keywordsequitur algorithmes_MX
dc.subject.keywordsequence mininges_MX
dc.subject.lcshTechnologyes_MX
dc.titleCharacterisation of visitors and description of their navigation behaviour using web log mining techniqueses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
MasterThesis_Alicia_final.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description:
Archivo de tesis
Loading...
Thumbnail Image
Name:
firmas_tesis_Alicia.pdf
Size:
368.98 KB
Format:
Adobe Portable Document Format
Description:
Firmas de la tesis
Loading...
Thumbnail Image
Name:
acuerdo_uso_de_obra_firmado.pdf
Size:
51.87 KB
Format:
Adobe Portable Document Format
Description:
Acuerdo de uso de obra

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia