Electric vehicle’s battery cell modeling and state of charge sstimation

dc.audience.educationlevelEmpresas/Companies
dc.contributor.advisorTudón Martínez, Juan Carlos
dc.contributor.authorBarragán Hernández, Allen Uriel
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberMartinez Molina, John Jairo
dc.contributor.committeememberLozoya Santos, Jorge Jesús de
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2024-11-19
dc.date.accessioned2025-01-08T05:27:55Z
dc.date.issued2024-12
dc.descriptionhttps://orcid.org/0000-0003-0646-1871
dc.description.abstractThe rapid growth in electric vehicle (EV) adoption underscores the necessity for precise battery management systems (BMS) to ensure safety, efficiency, and longevity of lithium-ion batteries, the leading technology in EV battery packs. As EV technology evolves, the need for accurate State of Charge (SOC) estimation becomes increasingly critical, influencing battery performance, lifespan, and operational safety. Despite advancements, current SOC estimation models struggle to predict SOC accurately under diverse real world conditions, often due to simplifying assumptions or controlled testing environments. Existing models fail to capture dynamic voltage behaviors influenced by charge-discharge cycles, leading to potential inaccuracies in SOC prediction under practical scenarios. This research develops a robust SOC estimation model for EV batteries, integrating advanced battery modeling and Extended Kalman Filter (EKF) methodologies. The study seeks to improve SOC estimation accuracy and reliability, addressing the complex and nonlinear behaviors of lithium-ion batteries in varying operating conditions. Three distinct battery models, (one-state, two-state, and three-state model), each with increasing complexity and fidelity in SOC prediction are employed in this research. Using real world battery performance data, these models are refined through EKF implementation, allowing real-time SOC estimation under variable conditions. The study reveals that model complexity directly correlates with SOC estimation accuracy. The three-state model, while computationally demanding, achieves the highest accuracy The two-state model strikes a balance between accuracy and resource efficiency. Conversely, the one-state model is appropriate for low-stakes applications that do not require high SOC precision. Results highlight that different applications may require varying levels of model complexity to align with their accuracy and resource demands.
dc.description.degreeMaster of Science in Manufacturing Systems
dc.format.mediumTexto
dc.identificator331702
dc.identifier.citationBarragán Hernández, A. U. (2024). Electric vehicle’s battery cell modeling and state of charge sstimation [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702991
dc.identifier.cvu1269521
dc.identifier.orcidhttps://orcid.org/0009-0000-8787-3178
dc.identifier.urihttps://hdl.handle.net/11285/702991
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE VEHÍCULOS DE MOTOR::AUTOMÓVILES
dc.subject.keywordLi-ion
dc.subject.keywordBattery cell
dc.subject.keywordState of charge
dc.subject.keywordElectric vehicle
dc.subject.keywordExtended kalman filter
dc.subject.keywordState estimation
dc.subject.keywordBattery modeling
dc.subject.lcshTechnology
dc.titleElectric vehicle’s battery cell modeling and state of charge sstimation
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
BarraganHernandez_TesisMaestriapdfa.pdf
Size:
14.03 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
BarraganHernandez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
232.91 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado yDeclaracion Autoría
Loading...
Thumbnail Image
Name:
BarraganHernandez_CartaAutorizacionpdf.pdf
Size:
71.18 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia