Improving deep neural networks to identify depression using neural architecture search

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorTrejo Rodríguez, Luis Ángel
dc.contributor.authorHernández Silva, Erick
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberCantoral Ceballos, José Antonio
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Estado de México
dc.contributor.mentorSosa Hernández, Víctor Adrián
dc.date.accepted2025-05-30
dc.date.accessioned2025-07-01T19:54:23Z
dc.date.issued2025-06
dc.description.abstractA Neural Architecture Search (NAS) framework utilizing Evolutionary Algorithms (EAs) and a regressor model is proposed to improve the classification performance of Deep Neural Net- works (DNNs) for the early detection of Major Depressive Disorder (MDD) from speech data represented by Mel-Spectrograms. The framework automates the design of neural network architectures by systematically exploring a well-defined search space that integrates convo- lutional layers, batch normalization, dropout, max pooling, and self-attention mechanisms, aiming to capture both spatial and temporal features inherent in vocal signals. By optimiz- ing for the F1-score, the framework addresses challenges related to data imbalance, ensuring robust generalization across both depressed and non-depressed samples. The proposed approach employs an integer-based encoding scheme to represent candi- date architectures, coupled with repair and validation processes that ensure all architectures meet specific design constraints. A self-adaptive mechanism dynamically adjusts the muta- tion factor based on evolutionary feedback, improving the balance between exploration and exploitation during the search process. Furthermore, a surrogate model, built using Princi- pal Component Analysis (PCA) and XGBoost regressor, predicts architecture performance, significantly reducing computational costs by avoiding full model training for all candidates. Experimental validation, conducted on publicly available speech datasets, demonstrates that NAS-generated architectures may outperform manually designed state-of-the-art models in terms of F1-score, accuracy, precision, recall, and specificity. The results confirm the effec- tiveness of integrating self-attention mechanisms with convolutional operations for extracting relevant depression-related vocal biomarkers. This research underlines the potential of NAS in advancing non-invasive, scalable, and interpretable AI-driven tools for mental health as- sessment, contributing to early intervention strategies and improving clinical outcomes in depression diagnosis.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator321299
dc.identifier.citationHernández Silva, E. (2025). Improving deep neural networks to identify depression using neural architecture search [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703796
dc.identifier.cvu1317819
dc.identifier.urihttps://hdl.handle.net/11285/703796
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationSecretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI)
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRAS
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::PSIQUIATRÍA::PSICOTERAPIA
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::SALUD PÚBLICA::OTRAS
dc.subject.keywordNeural Architecture Search (NAS)
dc.subject.keywordDepression Detection
dc.subject.keywordSpeech Analysis
dc.subject.keywordConvolutional Neural Networks (CNNs)
dc.subject.keywordSelf-Attention Mechanism
dc.subject.keywordEvolutionary Algorithms
dc.subject.keywordSpectrograms
dc.subject.keywordSurrogate Models
dc.subject.keywordDeep Learning
dc.subject.keywordMental Health
dc.subject.lcshMedicine
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleImproving deep neural networks to identify depression using neural architecture search
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
HernandezSilva_TesisMaestria_pdfa.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
HernandezSilva_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
506.21 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
HernándezSilva_CartaAutorizacion_pdf.pdf
Size:
145.07 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia