Reinforcement learning for an attitude control algorithm for racing quadcopters

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorBustamante Bello, Martín Rogelio
dc.contributor.authorNakasone Nakamurakari, Shun Mauricio
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberNavarro Durán, David
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Ciudad de Méxicoes_MX
dc.contributor.mentorGaluzzi Aguilera, Renato
dc.creatorBUSTAMANTE BELLO, MARTIN ROGELIO; 58810
dc.date.accepted2022-06-15
dc.date.accessioned2023-06-23T15:06:58Z
dc.date.available2023-06-23T15:06:58Z
dc.date.issued2022-06-15
dc.descriptionhttps://orcid.org/ 0000-0001-9270-0052es_MX
dc.description.abstractFrom its first conception to its wide commercial distribution, Unmanned Aerial Vehicle (UAV)’s have always presented an interesting control problem as their dynamics are not as simple to model and present a non-linear behavior. These vehicles have improved as the technology in these devices has been developed reaching commercial and leisure use in everyday life. Out of the many applications for these vehicles, one that has been rising in popularity is drone racing. As technology improves, racing quadcopters have also improved reaching capabilities never seen before in flying vehicles. Though hardware and performance have improved throughout the drone racing industry, something that has been lacking, in a way, is better and more robust control algorithms. In this thesis, a new control strategy based on Reinforcment Learning (RL) is presented in order to achieve better performance in attitude control for racing quadcopters. For this process, two different plants were developed to fulfill, a) the training process needs with a simplified dynamics model and b) a higher fidelity Multibody model to validate the resulting controller. By using Proximal Policy Optimization (PPO), the agent is trained via a reward function and interaction with the environment. This dissertation presents a different approach on how to determine a reward function such that the agent trained learns in a more effective and faster way. The control algorithm obtained from the training process is simulated and tested against the most common attitude control algorithm used in drone races (Proportional Integral Derivative (PID) control), as well as its ability to reject noise in the state signals and external disturbances from the environment. Results from agents trained with and without these disturbances are also presented. The resulting control policies were comparable to the PID controller and even outperformed this control strategy in noise rejection and robustness to external disturbances.es_MX
dc.description.degreeMaster of Science in Engineeringes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120321es_MX
dc.identifier.citationNakasone Nakamurakari, S. M.(2022), Reinforcement learning for an attitude control algorithm for racing quadcopters [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650935es_MX
dc.identifier.cvuCVU 1080299es_MX
dc.identifier.orcidhttps://orcid.org/ 0000-0002-2660-8378es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650935
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE NAVEGACIÓN Y TELEMETRÍA DEL ESPACIOes_MX
dc.subject.keywordQuadcopteres_MX
dc.subject.keywordAttitudees_MX
dc.subject.keywordControles_MX
dc.subject.keywordReinforcement learninges_MX
dc.subject.keywordRacees_MX
dc.subject.keywordPIDes_MX
dc.subject.keywordDeep learninges_MX
dc.subject.keywordDynamicses_MX
dc.subject.lcshSciencees_MX
dc.titleReinforcement learning for an attitude control algorithm for racing quadcopterses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Tesis Shun Mauricio Nakasone.pdf
Size:
9.75 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis.pdf
Size:
290.74 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Autoria Shun Mauricio Nakasone.pdf
Size:
41.64 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Firma Shun Mauricio Nakasone.pdf
Size:
192.13 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia