ECG-based heartbeat classification for arrhythmia detection: a step-by-step AI exploratory process

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTamez Peña, José Gerardo
dc.contributor.authorSilva Mendez, Adrian
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberGutiérrez Ruiz, Dania
dc.contributor.committeememberSantos Díaz, Alejandro
dc.contributor.committeememberMartínez Ledesma, Juan Emmanuel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorTAMEZ PEÑA, JOSE GERARDO; 67337
dc.date.accepted2022-11-17
dc.date.accessioned2023-11-08T22:17:28Z
dc.date.available2023-11-08T22:17:28Z
dc.date.issued2022-12
dc.descriptionhttps://orcid.org/0000-0003-1361-5162es_MX
dc.description.abstractThis document presents the thesis of “ECG-based heartbeat classification for arrhythmia detection: A step-by-step AI Exploratory Process” for the degree of Master in Computer Science at Tecnológico de Monterrey. One of the biggest causes of death around the world (including third and first world countries) are Cardiovascular Diseases. Arrhythmia is one of those diseases in which the heart beats at an inconsistent and abnormal rhythm due to a malfunction in the electrical system of the heart. The detection, diagnosis, and classification are very challenging tasks for doctors as time is a crucial factor on the table. If it is not done in time, the patient’s life can be at risk. This proposal explores different Data Pre-processing and Feature Generation techniques to create an efficient and accurate binary classification model capable of distinguishing normal from abnormal heartbeats with an Accuracy and Sensitivity ranging in the 80-90% with a 10% increase when compared to a RAW feature vector. One of the most important ideas discussed throughout this thesis includes decomposing the ECG signal in Frequency and Time domains usingDual Tree Complex Wavelet Transform to create a Feature Vector. Another important highlight of this thesis is database manipulation, including the exclusion and the correct distribution of subjects across the training and testing sets. The approach aims to test the feature vectors by training different Supervised Learning Models including K Nearest Neighbours, Random Forest, and X-Gradient Boosting. We will be using the MIT-BIH Arrhythmia Database for the experimentation process.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationSilva Méndez, A. (2022, December). ECG-based heartbeat classification for arrhythmia detection: a step-by-step AI exploratory process. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.orcidhttps://orcid.org /0000-0002-0516-6312es_MX
dc.identifier.urihttps://hdl.handle.net/11285/651449
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.relation.urlhttps://github.com/adriansilva/ArrhythmiaClassificationes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordECGes_MX
dc.subject.keywordAIes_MX
dc.subject.keywordDTCWTes_MX
dc.subject.keywordPCAes_MX
dc.subject.keywordPre-Processinges_MX
dc.subject.keywordArrhythmiaes_MX
dc.subject.keywordKNNes_MX
dc.subject.keywordRandom Forestes_MX
dc.subject.keywordX-Gradient Boostinges_MX
dc.subject.keywordHeartbeates_MX
dc.subject.keywordFeature Extractiones_MX
dc.subject.keywordCross Validationes_MX
dc.subject.lcshTechnologyes_MX
dc.titleECG-based heartbeat classification for arrhythmia detection: a step-by-step AI exploratory processes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
SilvaMendez_TesisMaestriapdfa.pdf
Size:
3.29 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
SilvaMendez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
444.82 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración Autoría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON_FIRMADA.pdf
Size:
107.54 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia