Experimental and computational study of GelMA microgel generation and deformation using a microfluidic device

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorMartínez Chapa, Sergio Omar
dc.contributor.authorTaravatfard, Zahra
dc.contributor.catalogerqro /|bqrotbecerra/tolmquevedoes_MX
dc.contributor.committeememberRay, Mallar
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorMadadelahi, Masoud
dc.date.accepted2020-12-01
dc.date.accessioned2022-01-28T23:07:10Z
dc.date.available2022-01-28T23:07:10Z
dc.date.created2020
dc.date.issued2020-12-01
dc.descriptionhttps://orcid.org/0000-0003-2689-1166es_MX
dc.description.abstractGene editing is a technique through which DNA segments can be modified within the genome of a living organism. Despite the many potential applications, current gene editing techniques are still low-throughput and have several limitations. On one side, the conventional 2D cell culturing techniques suffer from low cell viability and proliferation. On the other side, transfection techniques commonly using exogenous materials lead to off-target effects in cells. Droplet-based microfluidic devices (DBMD) show great potential for gene editing. They allow precise single-cell manipulation, encapsulation and might eventually achieve high throughput. As an example, using a DBMD, cells encapsulated in GelMA microgels have kept viability and shown proliferation. Moreover, DBMD might play a key role in cell transfection. Particularly, mechanical squeeze of cells encapsulated in droplets and moving through a narrow channel favors the entrance of foreign materials into the cells. This thesis presents the design and implementation of droplet-based microfluidic systems for fabrication of monodisperse GelMA microgels. First, a DBMD was developed using three techniques of soft lithography, stereolithography, and cutter plotting and the comparison between the devices was conducted. Second, fabrication of both, solid-like as well as core-shell microgels with average size of 133.43±5 µm was demonstrated. It was shown the generated microgels have spherical morphology with pore size area of 23.28±6 um2. Finally, computer simulation was used to emulate microgel indentation (solid-like and core-shell) with or without cells; as well as the throughput of the designed confinement channel. From the indentation of particles, it was concluded that lower stiffnesses was obtained for core-shells in comparison to solid-like microgels. It is also shown that a 21% and 24 % deformation in microgels containing cells causes 30% and 40% deformation of encapsulated cells, respectively, vital in cells transfection-based confinement channel application. From computational fluid dynamics (CFD) model, we observed the enhancement of the throughput of the device by selecting a longer confinement length. It is expected these preliminary results presented in this thesis will motivate other works that eventually lead to the development of efficient droplet-based microfluidic devices for cell transfection.es_MX
dc.description.degreeMaster of Science in Nanotechnologyes_MX
dc.format.mediumTextoes_MX
dc.identificator3||32||2410||230204es_MX
dc.identificator3||32||2410||241007es_MX
dc.identificator6es_MX
dc.identifier.citationTaravatfard, Z. A. (2020). Experimental and computational study of GelMA microgel generation and deformation using a microfluidic device (Master Thesis, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey). Recuperado de: https://hdl.handle.net/11285/644049es_MX
dc.identifier.cvu972356es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-4984-0524es_MX
dc.identifier.urihttps://hdl.handle.net/11285/644049
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationTecnológico de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relation.impreso2020-12-01
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::BIOLOGÍA HUMANA::GENÉTICA BIOQUÍMICAes_MX
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::BIOLOGÍA HUMANA::GENÉTICA HUMANAes_MX
dc.subject.classificationCIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍAes_MX
dc.subject.keywordGelMA microgeles_MX
dc.subject.keywordDroplet-based microfluidicses_MX
dc.subject.keywordNanoindentationes_MX
dc.subject.keywordcore-shell gelses_MX
dc.subject.lcshTechnologyes_MX
dc.titleExperimental and computational study of GelMA microgel generation and deformation using a microfluidic devicees_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Zahra Taravatafard, Thesis.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
87.83 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Signatures.pdf
Size:
133.08 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia