Computational estimation of system-level gene coexpression across human tissues

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTreviño Alvarado, Victor Manuel
dc.contributor.authorCortés Guzmán, Miguel Ángel
dc.contributor.catalogerhermlugo, emipsanchezes_MX
dc.contributor.committeememberGarza Rodríguez, Lourdes
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorTREVIÑO ALVARADO, VICTOR MANUEL; 205076
dc.date.accessioned2021-09-25T01:43:35Z
dc.date.available2021-09-25T01:43:35Z
dc.date.created2020-10
dc.date.issued2020-10
dc.descriptionhttps://orcid.org/0000-0002-7472-9844es_MX
dc.description.abstractLarge-scale gene coexpression projects have been a valuable resource for researchers involved in bioinformatics, molecular biology and biomedical sciences as they provide support for formulating hypotheses regarding gene functions and interactions, as well as for prioritizing genes in experimental designs. Such projects however, contain results calculated from all sorts of samples including healthy, disease and experimental condition specimens in addition to many of them not being based on sequencing technologies. The understanding of normality in the context of human gene coexpression is pivotal as this helps uncovering new functional associations for previously known or unknown genes and it serves as a comparison point when studying disease states. Other tools besides the Pearson Correlation Coefficient have not been traditionally explored for large-scale coexpression, potentially letting more complex non-linear associations between genes pass. In this computer science master thesis, a system-level coexpression estimation across a variety of normal human tissues is proposed. The objective is not only improve on the current areas of opportunity that exist in the large-scale coexpression research domain, but to also provide the scientific community with a novel and useful resource of system-level human coexpression data. Results comprise the first large-scale coexpression estimation in the literature that exclusively considers normal samples in the input data that were profiled with sequencing technologies in combination with 3 distinct coexpression metrics considered for calculation: the Pearson Correlation Coefficient, the Spearman Rank Correlation Coefficient and the highly interpretable Chi-square test of independence.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator2||24||2409||241007es_MX
dc.identifier.citationCortés Guzmán, M. A. (2020). Computational estimation of system-level gene coexpression across human tissues (Tesis de Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, México. Recuperado de: https://hdl.handle.net/11285/639378es_MX
dc.identifier.cvu912714es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-9461-2547es_MX
dc.identifier.urihttps://hdl.handle.net/11285/639378
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-10
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::GENÉTICA::GENÉTICA HUMANAes_MX
dc.subject.keywordgenees_MX
dc.subject.keywordexpressiones_MX
dc.subject.keywordsystem-leveles_MX
dc.subject.keywordhumanes_MX
dc.subject.keywordhealthyes_MX
dc.subject.keywordnormales_MX
dc.subject.keywordcoexpressiones_MX
dc.subject.lcshSciencees_MX
dc.titleComputational estimation of system-level gene coexpression across human tissueses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
CortesGuzman_TesisMaestriaPDFA.pdf
Size:
36.46 MB
Format:
Adobe Portable Document Format
Description:
Tesis de Maestría
Loading...
Thumbnail Image
Name:
CortesGuzman_ActadeGradoDeclaracionAutoriaPDFA.pdf
Size:
215.57 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado Declaracion de Autoria
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
115.1 KB
Format:
Adobe Portable Document Format
Description:
Carta autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia