A deep-learning application for epithelial cells image detection

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorCortes Capetillo, Azael Jesus
dc.contributor.authorAnaya Alvarez, Sergio Eduardo
dc.contributor.catalogertolmquevedo/mscuervoes_MX
dc.contributor.committeememberGüemes Castorena, David
dc.contributor.committeememberLozoya Santos, Jorge de Jesús
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorCORTES CAPETILLO, AZAEL JESUS; 366841
dc.date.accepted2022-06-14
dc.date.accessioned2023-06-22T22:36:52Z
dc.date.available2023-06-22T22:36:52Z
dc.date.issued2021-09-16
dc.description.abstractUrinary particles are used to evaluate the different urinary tract diseases in patients. Currently, doctors use the traditional methods for urinalysis such as urine dipstick, urine culture and microscopy. Microscopy is an effective method for the diagnosis and treatment of many kidney and urinary tract diseases. However, manual microscopic examination of urine is labor-intensive, subjective, imprecise, and time-consuming. In this project, we proposed the development of a different deep learning models classifier for an automated microscopic urinalysis system for epithelial cells. A dataset was constructed from scratch taking urine samples from the Hospital Ginequito obtaining a total of 857 images. Then, the images were labeled into urine samples with and without epithelial cells for binary classification. Last, we created three deep learning models using the InceptionV3 architectures with different series of fully connected layers randomly initialized and ReLU activation, a dropout rate of 0.2 and a final sigmoid layer for classification. The best model obtained a training accuracy of 81.89% with sensitivity of 77.84%, specificity of 85.94% and precision of 84.70% and a validation accuracy of 84.28% with a sensitivity of 87.50%, specificity of 81.25% and precision of 82.35%. It was concluded that microscopic urinalysis can be done automatically, this opens the door for the classification of more urine particles with improved metrics.es_MX
dc.description.degreeMaster of Science In Manufacturing Systemses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331110es_MX
dc.identifier.citationAnaya Alvarez, S. E. (2022). A deep-learning application for epithelial cells image detection [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650933es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650933
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsrestrictedAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::INSTRUMENTOS MÉDICOSes_MX
dc.subject.keywordDeep learninges_MX
dc.subject.keywordUTIes_MX
dc.subject.keywordTransfer learninges_MX
dc.subject.keywordMicroscopyes_MX
dc.subject.lcshTechnologyes_MX
dc.titleA deep-learning application for epithelial cells image detectiones_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Tesis Sergio Eduardo Anaya.pdf
Size:
3.48 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
95.99 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización
Loading...
Thumbnail Image
Name:
Autoria Sergio Eduardo Anaya.pdf
Size:
64.79 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Firmas Sergio Eduardo Anaya.pdf
Size:
128.06 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia