An explainable AI-based system for kidney stone classification using color and texture descriptors

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorOchoa Ruiz, Gilberto
dc.contributor.authorDe Anda García, Ilse Karena
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorHinojosa Cervantes, Salvador Miguel
dc.date.accessioned2025-07-15T19:00:35Z
dc.date.issued2025-06
dc.descriptionhttps://orcid.org/0000-0002-9896-8727
dc.description.abstractKidney stone disease affects nearly 10% of the global population and remains a significant clinical and economic burden. Accurate classification of stone subtypes is essential for guiding treatment decisions and preventing recurrence. This thesis presents the design, implementation, and evaluation of an explainable artificial intelligence (XAI)-based dual-output system that predicts both the texture and color subtype of kidney stones using image-based descriptors. The proposed system extracts features from stone images captured in Section and Surface views and processes them through parallel branches optimized for texture and color. Texture classification is performed using an ensemble of PCA-reduced deep descriptors from InceptionV3, AlexNet, and VGG16. For color, the most effective model combined handcrafted HSV descriptors with PCA-compressed deep CNN features. These were fused into a dual-output architecture using a MultiOutputClassifier framework. The models were evaluated using five-fold cross-validation. Texture classification reached 98.67% ± 1.82 accuracy in Section and 95.33% ± 1.83 in Surface. Color classification achieved 90.67% ± 9.25 and 85.34% ± 11.93, respectively. Exact match accuracy for joint prediction was 91.4% in Section and 84.2% in Surface, indicating high coherence between the two outputs. Explainability was addressed through FullGrad visualizations and Weight ofFeature (WOF) analysis, both of which showed that the model relied on clinically meaningful image regions and that color features held slightly greater predictive influence. Compared to state-of-the-art approaches, including multi-view fusion models, the proposed method achieved a competitive performance while maintaining a modular and transparent structure. The findings validate the hypothesis that combining deep and handcrafted descriptors can enhance interpretability and, in some cases, performance. This work contributes a clinically aligned and interpretable framework for automated kidney stone classification and supports the integration of XAI into nephrological diagnostic workflows. Moreover, by providing interpretable dual predictions of color and texture, this system can support early preventive decisions aimed at reducing recurrence. Future work could explore advanced generative models to further expand diversity and clinical utility of synthetic data. Compared to state-of-the-art approaches, the proposed method achieved a competitive performance while maintaining a modular and transparent structure. The findings validate the hypothesis that combining deep and handcrafted descriptors can enhance interpretability and performance. This work contributes a clinically aligned and interpretable framework for automated kidney stone classification and supports the integration of XAI into nephrological diagnostic workflows.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator120304
dc.identificator331499
dc.identificator320506
dc.identifier.citationDe Anda García, Ilse Karena (2025). An explainable AI-based system for kidney stone classification using color and texture descriptors [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703836
dc.identifier.orcidhttps://orcid.org/0009-0007-1032-1130
dc.identifier.urihttps://hdl.handle.net/11285/703836
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
dc.relationSecretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI)
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRAS
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::MEDICINA INTERNA::NEFROLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.keywordKidney stone classification
dc.subject.keywordExplainable artificial intelligence
dc.subject.keywordTexture descriptors
dc.subject.keywordColor descriptors
dc.subject.keywordMedical image analysis
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleAn explainable AI-based system for kidney stone classification using color and texture descriptors
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
DeAndaGarcia_TesisMaestria_pdfa.pdf
Size:
17.62 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
DeAndaGarcía_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
741.99 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
DeAndaGarcia_CartaAutorizacion_pdf.pdf
Size:
142.94 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia