Contextual information for Person Re-Identification on outdoor environements.

dc.audience.educationlevelEmpresas/Companieses_MX
dc.audience.educationlevelEstudiantes/Studentses_MX
dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.audience.educationlevelMaestros/Teacherses_MX
dc.contributor.advisorChang Fernández, Leonardo
dc.contributor.authorGarnica López, Luis Alberto
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberPérez Suárez, Airel
dc.contributor.committeememberGutiérrez Rodríguez, Andrés Eduardo
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorGonzález Mendoza, Miguel
dc.creatorChang Fernández, Leonardo; 345979
dc.date.accepted2021-05-21
dc.date.accessioned2022-09-23T15:06:19Z
dc.date.available2022-09-23T15:06:19Z
dc.date.created2021-05
dc.date.issued2021-06
dc.descriptionhttps://orcid.org/ 0000-0002-0703-2131es_MX
dc.description.abstractPerson Re-Identification (ReID) is obtaining good results and is getting closer and closer to being ready for implementation in production scenarios. However, there are still improvements to be performed, and usually the performance of this task is affected by illumination or natural elements that could distort their images such as fog or dust, when the task is implemented in outdoor environments. In this work, we introduce a novel proposal for the inclusion of contextual information in a ReID re-ranking approach, to help to improve the effectiveness of this task in surveillance systems. Most of the previous research in this field usually make use only of the visual data contained in the images processed by ReID. Even the approaches that make use of some sort of context, is normally annotated context within the scope of the image itself, or the exploration of the relationships between the different images where the Id’s are found. We understand that there is a lot of contextual information available in these scenarios that are not being included and that might help to reduce the impact of these situations on the performance of the task. In the present document, we perform a complete analysis of the effect of the inclusion of this contextual information with the normally produced embeddings generated by several ReID models, processing it through an architecture inspired in siamese neural networks, but with triplet loss. The neural network was trained using a novel dataset developed specifically for this task, which is annotated including this extra information. The dataset is composed of 34156 images from 3 different cameras of 501 labeled identities. Along with this data, each image includes 12 extra features with its specific contextual information. This dataset of images was processed previously using three different ReID models to ensure that the results obtained when the information is included, are independent of the ReID approach taken as the base, which are: Triplet Network (TriNet), Multiple Granularity Network (MGN), and Multi-Level Factorization Net (MLFN). Each one produced 2048-dimensional embeddings. All of our proposed experiments achieved an improvement with respect to the original mAP generated from these three networks. Going from 86.53 to 94.9, from 84.94 to 93.11, and from 95.35 to 95.93 respectively for our dataset.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||330417es_MX
dc.identifier.citationGarnica López, L. A. (2021). Contextual Information for Person Re-Identification on Outdoors Environments (Tesis de maestría). Tecnológico de Monterrey. Recuperado de: https://hdl.handle.net/11285/649730es_MX
dc.identifier.cvu965700es_MX
dc.identifier.urihttps://hdl.handle.net/11285/649730
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationConacytes_MX
dc.relationTecnológico de Monterreyes_MX
dc.relation.isFormatOfdraftes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REALes_MX
dc.subject.keywordReIdes_MX
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordContextual Informationes_MX
dc.subject.keywordPerson Re-Identificationes_MX
dc.subject.keywordDeep Metric Learninges_MX
dc.subject.keywordOutdoor environmentes_MX
dc.subject.keywordTriplet Losses_MX
dc.subject.keywordSurveillance Systemes_MX
dc.subject.keywordPedestrianses_MX
dc.subject.lcshTechnologyes_MX
dc.titleContextual information for Person Re-Identification on outdoor environements.es_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
LopezGarnica_TesisMaestriapdfa.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
100.45 KB
Format:
Adobe Portable Document Format
Description:
DECLARACIÓN DE ACUERDO PARA USO DE OBRA
Loading...
Thumbnail Image
Name:
LopezGarnica_ActadeGradoyDeclaraciondeAutoriapdfa.pdf
Size:
243.37 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia