Anomaly detection in a cost-effective conveyor belt testing system

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorNavarro Durán, David
dc.contributor.authorSolórzano Souza, Ana Paula
dc.contributor.catalogermtyahinojosa, emipsanchez
dc.contributor.committeememberGalluzzi Aguilera, Renato
dc.contributor.committeememberSotelo Molina, Carlos Gustavo
dc.contributor.committeememberNavarro Durán, David
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Ciudad de México
dc.date.accepted2025-11-14
dc.date.accessioned2025-12-14T20:01:59Z
dc.date.embargoenddate2028-01-31
dc.date.issued2024-09
dc.descriptionhttps://orcid.org/0000-0001-6632-8576
dc.description.abstractThe industrial manufacturing sector faces significant challenges regarding energy efficiency and operational sustainability, particularly in the management of motor driven systems such as conveyor belts. While traditional diagnostic methods effectively identify faults, a critical gap remains in closing the control loop to enable autonomous corrective actions, specifically for mechanical tension regulation y conveyor belts. This research addresses this limitation by designing, implementing, and validating a low-cost, small-scale prototype capable of soft real-time energy monitoring, anomaly detection, and automatic physical correction. The system utilizes an ESP32 microcontroller and an INA219 sensor to analyze voltage and current signals, employing unsupervised machine learning algorithms such as Isolation Forest (IF) and One-Class Support Vector Machine (OC-SVM). This serves to diagnose tension states defined by specific deflection thresholds. To execute the physical corrections, the platform integrates a custom built rack and pinion mechanism driven by a servomotor, which automatically regulates the belt tension. Methodologically, the study characterized optimal operational conditions at a 30% PWM duty cycle and applied a median filter that reduced signal variability. Four models were trained using exclusively optimal-state data under univariate and multivariate configurations. Experimental results demonstrate that electrical parameters serve as reliable indicators of mechanical tension in a small scale conveyor belt. The Univariate One-Class SVM model applied to voltage yielded the highest performance, achieving an F1-Score of 0.8624. Meanwhile, the Multivariate OC-SVM model demonstrated high reliability with a Precision of 90.51% and a Recall of 72.95%. Upon detection of anomalies (slippage or excessive tightness), the system successfully triggered autonomous adjustments via a rack and pinion mechanism. These findings validate the feasibility of using accessible monitoring to implement intelligent, self-correcting maintenance systems, offering a scalable solution to minimize downtime and energy waste in industrial environments.
dc.description.degreeMaestra en Ciencias de la Ingeniería
dc.format.mediumTexto
dc.identificator120304||330405||120325
dc.identifier.cvu1299455
dc.identifier.orcidhttps://orcid.org/0009-0002-4544-699X
dc.identifier.urihttps://hdl.handle.net/11285/705022
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.embargoreasonSe cuentan con publicaciones pendientes, el embargo funcionará para permitir el proceso de revisión de las mismas.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::SISTEMAS AUTOMATIZADOS DE CONTROL DE CALIDAD
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::DISEÑO DE SISTEMAS SENSORES
dc.subject.keywordAnomaly Detection
dc.subject.keywordEnergy Monitoring
dc.subject.keywordMachine Learning
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleAnomaly detection in a cost-effective conveyor belt testing system
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
SolórzanoSouza_TesisMaestríaOriginal.pdf
Size:
12.24 MB
Format:
Adobe Portable Document Format
Description:
Tesis Original
Loading...
Thumbnail Image
Name:
SolórzanoSouzaAna_TesisMaestría.pdf
Size:
11.68 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
SolórzanoSouza_HojasdeFirmas.pdf
Size:
451.63 KB
Format:
Adobe Portable Document Format
Description:
Hojas de Firmas
Loading...
Thumbnail Image
Name:
Solórzano Souza_CartadeAutorización.pdf
Size:
138.75 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia