Regulatory challenges and optimization strategies for open large language models: a multidimensional framework for efficient management
dc.contributor.affiliation | https://ror.org/03ayjn504 | es_MX |
dc.contributor.author | García López, Iván Miguel | |
dc.contributor.author | Ramírez Montoya, María Soledad | |
dc.contributor.author | Molina Espinosa, José Martín | |
dc.date.accessioned | 2024-09-21T16:49:38Z | |
dc.date.available | 2024-09-21T16:49:38Z | |
dc.date.issued | 2024-10-23 | |
dc.description.abstract | Innovations in artificial intelligence are rapidly transforming various in-dustries, particularly through the development and deployment of Open Large Language Models (OLLMs). However, the absence of a robust regula-tory framework presents significant challenges in ensuring the ethical, safe, and effective use of these models. This research aims to address this gap by proposing a comprehensive regulatory framework designed to optimize the scalability and performance of OLLMs, emphasizing the importance of structured pruning techniques. By integrating both quantitative and qualita-tive analyses, the study will assess the technical capabilities and societal implications of OLLMs, ultimately providing clear guidelines that promote responsible and sustainable innovation. The expected outcomes include the development of a governance model that balances the need for innovation with ethical considerations, offering a pathway for the regulation of OLLMs that supports their continued evolution while safeguarding public interests. | es_MX |
dc.format.medium | Texto | es_MX |
dc.identificator | 4 | es_MX |
dc.identifier.citation | García-López, I.M., Ramírez-Montoya, M.S. & Molina-Espinosa, J.M. (2024). Reg-ulatory Challenges and Optimization Strategies for Open Large Language Models: A Multidimensional Framework for Efficient Management. 12th edition of the Techno-logical Ecosystems for Enhancing Multiculturality (TEEM 2024), Alicante, Spain. | es_MX |
dc.identifier.journal | Proceedings of TEEM 2024. TEEM 2024. Lecture Notes in Educational Technology | es_MX |
dc.identifier.orcid | https://orcid.org/0000-0001-9219-4970 | |
dc.identifier.orcid | https://orcid.org/0000-0002-1274-7061 | |
dc.identifier.orcid | https://orcid.org/0000-0002-4118-6951 | |
dc.identifier.uri | https://hdl.handle.net/11285/676995 | |
dc.language.iso | eng | es_MX |
dc.publisher | Springer Link | es_MX |
dc.relation.isFormatOf | acceptedVersion | es_MX |
dc.relation.url | https://2024.teemconference.eu/ | es_MX |
dc.rights | restrictedAccess | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
dc.subject | HUMANIDADES Y CIENCIAS DE LA CONDUCTA | es_MX |
dc.subject.country | España / Spain | es_MX |
dc.subject.keyword | open large language model | es_MX |
dc.subject.keyword | artificial intelligence | es_MX |
dc.subject.keyword | open framework | es_MX |
dc.subject.keyword | higher education | es_MX |
dc.subject.keyword | educational innovation | es_MX |
dc.subject.keyword | R4C§TE | es_MX |
dc.subject.lcsh | Education | es_MX |
dc.title | Regulatory challenges and optimization strategies for open large language models: a multidimensional framework for efficient management | |
dc.type | Conferencia |
Files
Original bundle
1 - 2 of 2
Loading...

- Name:
- 18TEEM160824.pdf
- Size:
- 317.21 KB
- Format:
- Adobe Portable Document Format
- Description:
- Conference PDF
Loading...

- Name:
- 18TEEM160824.docx
- Size:
- 134.44 KB
- Format:
- Microsoft Word XML
- Description:
- Conference DOC