Regulatory challenges and optimization strategies for open large language models: a multidimensional framework for efficient management

dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.authorGarcía López, Iván Miguel
dc.contributor.authorRamírez Montoya, María Soledad
dc.contributor.authorMolina Espinosa, José Martín
dc.date.accessioned2024-09-21T16:49:38Z
dc.date.available2024-09-21T16:49:38Z
dc.date.issued2024-10-23
dc.description.abstractInnovations in artificial intelligence are rapidly transforming various in-dustries, particularly through the development and deployment of Open Large Language Models (OLLMs). However, the absence of a robust regula-tory framework presents significant challenges in ensuring the ethical, safe, and effective use of these models. This research aims to address this gap by proposing a comprehensive regulatory framework designed to optimize the scalability and performance of OLLMs, emphasizing the importance of structured pruning techniques. By integrating both quantitative and qualita-tive analyses, the study will assess the technical capabilities and societal implications of OLLMs, ultimately providing clear guidelines that promote responsible and sustainable innovation. The expected outcomes include the development of a governance model that balances the need for innovation with ethical considerations, offering a pathway for the regulation of OLLMs that supports their continued evolution while safeguarding public interests.es_MX
dc.format.mediumTextoes_MX
dc.identificator4es_MX
dc.identifier.citationGarcía-López, I.M., Ramírez-Montoya, M.S. & Molina-Espinosa, J.M. (2024). Reg-ulatory Challenges and Optimization Strategies for Open Large Language Models: A Multidimensional Framework for Efficient Management. 12th edition of the Techno-logical Ecosystems for Enhancing Multiculturality (TEEM 2024), Alicante, Spain.es_MX
dc.identifier.journalProceedings of TEEM 2024. TEEM 2024. Lecture Notes in Educational Technologyes_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-9219-4970
dc.identifier.orcidhttps://orcid.org/0000-0002-1274-7061
dc.identifier.orcidhttps://orcid.org/0000-0002-4118-6951
dc.identifier.urihttps://hdl.handle.net/11285/676995
dc.language.isoenges_MX
dc.publisherSpringer Linkes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.urlhttps://2024.teemconference.eu/es_MX
dc.rightsrestrictedAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTAes_MX
dc.subject.countryEspaña / Spaines_MX
dc.subject.keywordopen large language modeles_MX
dc.subject.keywordartificial intelligencees_MX
dc.subject.keywordopen frameworkes_MX
dc.subject.keywordhigher educationes_MX
dc.subject.keywordeducational innovationes_MX
dc.subject.keywordR4C§TEes_MX
dc.subject.lcshEducationes_MX
dc.titleRegulatory challenges and optimization strategies for open large language models: a multidimensional framework for efficient management
dc.typeConferencia

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
18TEEM160824.pdf
Size:
317.21 KB
Format:
Adobe Portable Document Format
Description:
Conference PDF
Loading...
Thumbnail Image
Name:
18TEEM160824.docx
Size:
134.44 KB
Format:
Microsoft Word XML
Description:
Conference DOC

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia