A short-term deep learning model for urban pollution forecasting with incomplete data

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorFlores Tlacuahuac, Antonio
dc.contributor.authorColorado Cifuentes, Gerson Uriel
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberMendoza Domínguez, Alberto
dc.contributor.committeememberSantibañez Aguilar, José Ezequiel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorFLORES TLACUAHUAC, ANTONIO; 16028es_MX
dc.creatorMENDOZA DOMINGUEZ, ALBERTO; 25981es_MX
dc.creatorSANTIBAÑEZ AGUILAR, JOSE EZEQUIEL; 391315es_MX
dc.date.accessioned2021-08-25T16:50:34Z
dc.date.available2021-08-25T16:50:34Z
dc.date.created2020-01-15
dc.date.issued2020-01-15
dc.descriptionhttps://orcid.org/0000-0001-7944-0057es_MX
dc.description.abstractA deep neural network model for the short term prediction of Ozone, 10 micrometers particulate matter and 2.5 micrometers particulate matter concentrations in a major northwestern metropolitan area of Mexico is developed. In order to formulate such a model, the data avail- able from the local air quality automatic network monitoring system are used for training, validation and testing purposes. Such time series data are incomplete and a procedure of missing data imputation is carried out. The model predicts with high accuracy the concentration of the target pollutants and the training procedure, performance metrics and tools used are discussed in this work. Such a model can be used for the implementation and evaluation of public politics for improving population health, and reducing the potential negative impacts of harmful pollutants by issuing early warnings on dangerous pollution levels.es_MX
dc.description.degreeMaster of Science in Engineering Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator1||12||1206||120601es_MX
dc.identifier.citationColorado, G. (2020). A short-term deep learning model for urban pollution forecasting with incomplete data. [Tesis de maestría sin publicar]. Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, México. Recuperado de: https://hdl.handle.net/11285/637883es_MX
dc.identifier.cvu941433es_MX
dc.identifier.urihttps://hdl.handle.net/11285/637883
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relation.impreso2020-05-15
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.relation.urlhttps://github.com/gucoloradoc/AQFes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/about/cc0/es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ANÁLISIS NUMÉRICO::CONSTRUCCIÓN DE ALGORITMOSes_MX
dc.subject.keywordDeep neural networkes_MX
dc.subject.keywordMissing dataes_MX
dc.subject.keywordImputationes_MX
dc.subject.keywordTime serieses_MX
dc.subject.lcshSciencees_MX
dc.titleA short-term deep learning model for urban pollution forecasting with incomplete dataes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Colorado_Tesis Maestría.pdf
Size:
9.95 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis.pdf
Size:
52.12 KB
Format:
Adobe Portable Document Format
Description:
Declaración de Acuerdo para Uso de Obra
Loading...
Thumbnail Image
Name:
Colorado_Declaración de autoría.pdf
Size:
35.43 KB
Format:
Adobe Portable Document Format
Description:
Declaración de autoría
Loading...
Thumbnail Image
Name:
Colorado_Hoja de firmas.pdf
Size:
221.41 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia