A short-term deep learning model for urban pollution forecasting with incomplete data
| dc.audience.educationlevel | Investigadores/Researchers | es_MX |
| dc.contributor.advisor | Flores Tlacuahuac, Antonio | |
| dc.contributor.author | Colorado Cifuentes, Gerson Uriel | |
| dc.contributor.cataloger | emipsanchez | es_MX |
| dc.contributor.committeemember | Mendoza Domínguez, Alberto | |
| dc.contributor.committeemember | Santibañez Aguilar, José Ezequiel | |
| dc.contributor.department | School of Engineering and Sciences | es_MX |
| dc.contributor.institution | Campus Monterrey | es_MX |
| dc.creator | FLORES TLACUAHUAC, ANTONIO; 16028 | es_MX |
| dc.creator | MENDOZA DOMINGUEZ, ALBERTO; 25981 | es_MX |
| dc.creator | SANTIBAÑEZ AGUILAR, JOSE EZEQUIEL; 391315 | es_MX |
| dc.date.accessioned | 2021-08-25T16:50:34Z | |
| dc.date.available | 2021-08-25T16:50:34Z | |
| dc.date.created | 2020-01-15 | |
| dc.date.issued | 2020-01-15 | |
| dc.description | https://orcid.org/0000-0001-7944-0057 | es_MX |
| dc.description.abstract | A deep neural network model for the short term prediction of Ozone, 10 micrometers particulate matter and 2.5 micrometers particulate matter concentrations in a major northwestern metropolitan area of Mexico is developed. In order to formulate such a model, the data avail- able from the local air quality automatic network monitoring system are used for training, validation and testing purposes. Such time series data are incomplete and a procedure of missing data imputation is carried out. The model predicts with high accuracy the concentration of the target pollutants and the training procedure, performance metrics and tools used are discussed in this work. Such a model can be used for the implementation and evaluation of public politics for improving population health, and reducing the potential negative impacts of harmful pollutants by issuing early warnings on dangerous pollution levels. | es_MX |
| dc.description.degree | Master of Science in Engineering Sciences | es_MX |
| dc.format.medium | Texto | es_MX |
| dc.identificator | 1||12||1206||120601 | es_MX |
| dc.identifier.citation | Colorado, G. (2020). A short-term deep learning model for urban pollution forecasting with incomplete data. [Tesis de maestría sin publicar]. Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, México. Recuperado de: https://hdl.handle.net/11285/637883 | es_MX |
| dc.identifier.cvu | 941433 | es_MX |
| dc.identifier.uri | https://hdl.handle.net/11285/637883 | |
| dc.language.iso | eng | es_MX |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
| dc.relation | CONACYT | es_MX |
| dc.relation.impreso | 2020-05-15 | |
| dc.relation.isFormatOf | versión publicada | es_MX |
| dc.relation.isreferencedby | REPOSITORIO NACIONAL CONACYT | |
| dc.relation.url | https://github.com/gucoloradoc/AQF | es_MX |
| dc.rights | openAccess | es_MX |
| dc.rights.uri | http://creativecommons.org/about/cc0/ | es_MX |
| dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ANÁLISIS NUMÉRICO::CONSTRUCCIÓN DE ALGORITMOS | es_MX |
| dc.subject.keyword | Deep neural network | es_MX |
| dc.subject.keyword | Missing data | es_MX |
| dc.subject.keyword | Imputation | es_MX |
| dc.subject.keyword | Time series | es_MX |
| dc.subject.lcsh | Science | es_MX |
| dc.title | A short-term deep learning model for urban pollution forecasting with incomplete data | es_MX |
| dc.type | Tesis de maestría |
Files
Original bundle
1 - 4 of 4
Loading...
- Name:
- Colorado_Tesis Maestría.pdf
- Size:
- 9.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- CartaAutorizacionTesis.pdf
- Size:
- 52.12 KB
- Format:
- Adobe Portable Document Format
- Description:
- Declaración de Acuerdo para Uso de Obra
Loading...
- Name:
- Colorado_Declaración de autoría.pdf
- Size:
- 35.43 KB
- Format:
- Adobe Portable Document Format
- Description:
- Declaración de autoría
Loading...
- Name:
- Colorado_Hoja de firmas.pdf
- Size:
- 221.41 KB
- Format:
- Adobe Portable Document Format
- Description:
- Hoja de firmas
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

