A two-phase optimization model that considers risk and accessibility for vaccine allocation and health-care units location

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorRegis Hernández, Fabiola
dc.contributor.authorMartínez Fantini, Linda Sofía
dc.contributor.catalogerpuemcuervo, emipsanchezes_MX
dc.contributor.committeememberMora Ochomogo, Elma Irais
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorMora Vargas, Jaime
dc.creatorREGIS HERNANDEZ, FABIOLA; 331834
dc.date.accepted2021-12-03
dc.date.accessioned2022-05-23T12:47:48Z
dc.date.available2022-05-23T12:47:48Z
dc.date.issued2021-12-03
dc.description.abstractIn December 2019, the novel virus SARS-CoV-2 appeared causing the COVID-19 pandemic. Healthcare systems globally were primary affected by it due to the increase on medical attention and Intensive Care Units (ICUs) demand. Particularly, Mexico belonged among the top 10 coun- tries with the highest number of confirmed cases, and within the top 5 in global deaths. These indicators required federal authorities to mount complex response actions to eradicate it. One of the concerns to deal with hospitals overload is an effective vaccination plan. For this, we propose a two-phase model to prioritize the Mexican entities with higher levels of vulnerability and risk of hospitalization to address the demand allocation problem in an equitable way. The vulnerability index is obtained through data analysis of a Mexican open database, and the model considers a two-dose vaccination program, and a monthly time horizon. The second phase con- sists of a Maximal Covering Location problem that maximizes a set of accessibility indicators to locate the facilities to cover the maximum Mexican population possible. The models are solved in Gurobi Optimizer commercial software and provides the optimal solution within seconds. The results obtained in the allocation model showed that the first vaccine lots are assigned to Ciudad de Me ́xico which is the entity with highest risk of exposure, and, by August 2021 at least 71% of the population is immunized with vaccine. The second model exposes that when enabling 100% of the available facilities, only 57% of the municipalities has access to vaccination. Moreover a sensitivity analysis is employed to evaluate the effect of the radii and the weights in the solution. For future work, we propose the implementation of mobile units to enhance the accessibility. This way providing an effective and equitable solution for Mexico.es_MX
dc.description.degreeMasters of Science in Engineering Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator5||63||6310||631003es_MX
dc.identifier.citationMartinez Fantini L.S.(2021). A two-phase optimization model that considers risk and accessibility for vaccine allocation and health-care units location (Unpublished master's thesis). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/648337es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648337
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.embargoreasonPeriodo predeterminado para revisión de contenido susceptible de protección, patente o comercialización.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationCIENCIAS SOCIALES::SOCIOLOGÍA::PROBLEMAS SOCIALES::ENFERMEDADes_MX
dc.subject.keywordOptimizationes_MX
dc.subject.keywordRiskes_MX
dc.subject.keywordEquityes_MX
dc.subject.keywordVulnerabilityes_MX
dc.subject.keywordAccessibilityes_MX
dc.subject.keywordPandemices_MX
dc.subject.lcshSciencees_MX
dc.titleA two-phase optimization model that considers risk and accessibility for vaccine allocation and health-care units locationes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
MartinezFantini_TesisMaestriaPDFA.pdf
Size:
5.14 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
MartinezFantini_ActadeGradoyDeclaracionAutoriaPDFA.pdf
Size:
221.36 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración Autoría
Loading...
Thumbnail Image
Name:
FormatoTesis.pdf
Size:
678.15 KB
Format:
Adobe Portable Document Format
Description:
Formato de Declaración de Acuerdo para Uso de Obra
Loading...
Thumbnail Image
Name:
MCLPModelNov.xlsx
Size:
15.57 MB
Format:
Microsoft Excel XML
Description:
Additional Information

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia