Automated U-Net Hippocampal Segmentation and Volumetric Classification for Major Depressive Disorder Stage Differentiation

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorCantoral Ceballos, José Antonio
dc.contributor.authorSalazar Zozaya, Andrea del Carmen
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberCastañeda Miranda, Alejandro
dc.contributor.committeememberTrejo Rodriguez, Luis Angél
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorCaraza Camacho, Ricardo
dc.date.accepted2024-05-27
dc.date.accessioned2025-04-25T19:27:15Z
dc.date.embargoenddate2025-06-17
dc.date.issued2024-06
dc.description.abstractMajor Depressive Disorder (MDD) is the leading cause of disability in the world, affecting approximately 280 million people. Hippocampal volumetric changes have been proposed as a potential biomarker for depression. Despite advancements in neuroimaging studies related to psychiatric disorders, there remains a gap in the utilization of neuroimaging techniqes for clinical diagnosis and monitoring of such disorders. This study presents a comprehensive investigation of Major Depressive Disorder (MDD) stage differentiation using MRI data and a U-Net architecture for hippocampal segmentation across axial, coronal, and sagittal orientations. This approach presents a U-Net architecture to segment 2D slices of the hippocampus from MRI data in axial, sagittal, and coronal orientations. These segmented 2D slices are then concatenated to create a hippocampus volume representation, which is then used to obtain the hippocampal volume. These volumetric values are subsequently used to differentiate among the four stages of MDD according to the Beck Depression Inventory-II (minimal/no MDD, mild, moderate, and severe) using a Neural Network and three machine learning classifiers. The experimental results demostrated that the U-Net model effectively segments the hippocampus, while the volumetric analysis accurately differentiates MDD stages. The Gradient Boost classifier outperformed the other classifiers with an 98.5% accuracy, 99.90% precision, 98.85% recall, and an F1-score of 98.6%. This study advances the field of neuroimaging and mental disorder assessment by introducing a reliable and automated method for hippocampus segmentation and MDD stage categorization. Future directions include incorporating more brain regions such as the amygdala and habenula, creating a neural networks classifier based on 3D hippocampus images, and using larger, more diverse datasets to increase model performance and generalizability.es_MX
dc.description.degreeMaestra en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||120320
dc.identifier.citationSalazar Zozaya, A. (2024). Automated U-Net Hippocampal Segmentation and Volumetric Classification for Major Depressive Disorder Stage Differentiation [Tesis maestría]. Instituto Tecnológico de Estudios Superiores deMonterrey. Recuperado de: https://hdl.handle.net/11285/703551
dc.identifier.cvu1186503es_MX
dc.identifier.orcidhttps://orcid.org/0009-0007-0096-7819
dc.identifier.urihttps://hdl.handle.net/11285/703551
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.embargoreasonPublicación de artículo en una revista.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICO
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordMajor Depressive Disorderes_MX
dc.subject.keywordU-Netes_MX
dc.subject.keywordConvolutional Neural Networkes_MX
dc.subject.keywordDepression Classificationes_MX
dc.subject.lcshTechnologyes_MX
dc.titleAutomated U-Net Hippocampal Segmentation and Volumetric Classification for Major Depressive Disorder Stage Differentiationes_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Salazar Zozaya_TesisMestria.pdf
Size:
16.27 MB
Format:
Adobe Portable Document Format
Description:
Tesis Mestría
Loading...
Thumbnail Image
Name:
Salazar Zozaya_Carta Autorizacion.pdf
Size:
366.23 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia