Harnessing machine learning for short-to-long range weather forecasting: a Monterrey case study

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEmpresas/Companies
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorCruz Duarte, Jorge Mario
dc.contributor.authorMachado Guillén, Gustavo de Jesús
dc.contributor.catalogermtyahinojosa, emimmayorquin
dc.contributor.committeememberFilus, Katarzyna
dc.contributor.committeememberFalcón, Jesús Guillermo
dc.contributor.committeememberIbarra, Gerardo
dc.contributor.departmentDepartamento de Ciencias Computacionaleses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorConant, Santiago Enrique
dc.date.accepted2024-06-13
dc.date.accessioned2025-10-16T23:35:06Z
dc.date.issued2024-05
dc.description.abstractWeather forecasting is crucial in adapting and integrating renewable energy sources, particularly in regions with complex climatic conditions like Monterrey. This study aims to provide reliable weather prediction methodologies by evaluating the performance of various traditional Machine Learning models, including Random Forest Regressor (RFR), Gradient Boosting Regressor (GBR), Support Vector Regressor (SVR), and Recurrent Neural Networks (RNN) such as SimpleRNN, Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Cascade LSTM, Bidirectional RNNs, and a novel Convolutional LSTM/LSTM architecture that handles spatial and temporal data. The research employs a dataset of historical weather data from Automatic Weather Stations and Advanced Baseline Imager Level 2 GOES-16 products, including key weather features like air temperature, solar radiation, wind speed, relative humidity, and precipitation. The models were trained and evaluated across different predictive ranges by combining distinct sampling and model output sizes. This study’s findings underscore the effectiveness of the Cascade LSTM models, achieving a Mean Absolute Error of 1.6 °C for 72-hour air temperature predictions and 85.79 W/m2 for solar radiation forecasts. The ConvLSTM/LSTM model also significantly improves short-term predictions, particularly for solar radiation and humidity. The main contribution of this work is a comprehensive methodology that can be generalized to other regions and datasets, supporting the nationwide implementation of localized machine-learning forecasting models. This methodology includes steps for data collection, preprocessing, creation of lagged features, and model implementation, as well as applying distinct approaches to forecasting by using autoregressive and fixed window models. This framework enables the development of accurate, region-specific forecasting models, facilitating better weather prediction and planning nationwide.es_MX
dc.description.degreeMaestro en Ciencias Computationaleses_MX
dc.format.mediumTextoes_MX
dc.identificator120304||331101||250919||630503||250920
dc.identifier.citationMachado Guillén, G. d. J. (2024). Harnessing machine learning for short-to-long range weather forecasting: A Monterrey case study (Master’s thesis). Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, Mexico.es_MX
dc.identifier.cvu1239115es_MX
dc.identifier.urihttps://hdl.handle.net/11285/704312
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LA INSTRUMENTACIÓN::TECNOLOGÍA DE LA AUTOMATIZACIÓN
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::CIENCIAS DE LA TIERRA Y DEL ESPACIO::CIENCIAS DE LA ATMÓSFERA::MODIFICACIÓN DEL TIEMPO
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::ESTADÍSTICA::ANÁLISIS ESTADÍSTICO
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordWeather Forecastes_MX
dc.subject.keywordRecurrent Neural Networkses_MX
dc.subject.keywordTime Series Predictiones_MX
dc.subject.keywordSatellite Dataes_MX
dc.subject.keywordAutomatic Weather Stationes_MX
dc.subject.lcshScience
dc.subject.lcshTechnology
dc.titleHarnessing machine learning for short-to-long range weather forecasting: a Monterrey case study
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
MachadoGuillen_TesisMaestria.pdfa
Size:
21.43 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
MachadoGuillen_TesisMaestriaOriginal.pdfa
Size:
22.25 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría Original
Loading...
Thumbnail Image
Name:
MachadoGuillen_CartaAutorizacion.pdfa
Size:
151.34 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización
Loading...
Thumbnail Image
Name:
MachadoGuillen__ActadeGradoDeclaracondeAutoría.pdfa
Size:
662.43 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado Declaración de Autoría

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia