Characterization of jet fire flame temperature zones using a deep learning-based segmentation approach

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorOchoa Ruiz, Gilberto
dc.contributor.authorPérez Guerrero, Carmina
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberMata Miquel, Christian
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorPalacios Rosas, Adriana
dc.creatorOCHOA RUIZ, GILBERTO; 352103
dc.date.accepted2021-12-02
dc.date.accessioned2023-06-20T16:37:43Z
dc.date.available2023-06-20T16:37:43Z
dc.date.issued2021-12-02
dc.descriptionhttps://orcid.org/ 0000-0002-9896-8727es_MX
dc.description.abstractJet fires are relatively small and have the least severe effects among the diverse fire accidents that can occur in industrial plants; however, they are usually involved in a process known as domino effect, that leads to more severe events, such as explosions or the initiation of another fire, making the analysis of such fires an important part of risk analysis. One such analysis would be the segmentation of different radiation zones within the flame, therefore this thesis presents an exploratory research regarding several traditional computer vision and Deep Learning segmentation approaches to solve this specific problem. A data set of propane jet fires is used to train and evaluate the different approaches. Different metrics are correlated to a manual ranking performed by experts to make an evaluation that closely resembles the expert’s criteria. Additionally, given the difference in the distribution of the zones and background of the images, different loss functions, that seek to alleviate data imbalance, are explored. The Hausdorff Distance and Adjusted Rand Index were the metrics with the highest correlation and the best results were obtained from training with a Weighted Cross-Entropy Loss. The best performing models were found to be the UNet architecture, along with its recent variations, Attention UNet and UNet++. These models are then used to segment a group of vertical jet flames of varying pipe outlet diameters to extract their main geometrical characteristics. Attention UNet obtained the best general performance in the approximation of both height and area of the flames, while also showing a statistically significant difference between it and UNet++. UNet obtained the best overall performance for the approximation of the lift-off distances; however, there is not enough data to prove a statistically significant difference between UNet and its two variations. The only instance where UNet++ outperformed the other models, was while obtaining the lift-off distances of the jet flames with 0.01275 m pipe outlet diameter. In general, the explored models show good agreement between the experimental and predicted values for relatively large turbulent propane jet flames, released in sonic and subsonic regimes; thus, making these radiation zones segmentation models, a suitable approach for different jet flame risk management scenarios.es_MX
dc.description.degreeMaster of Science in Computer Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3322||332299es_MX
dc.identifier.citationPérez Guerrero, C. (2021). Characterization of jet fire flame temperature zones using a deep learning-based segmentation approach [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650913es_MX
dc.identifier.cvu1047860es_MX
dc.identifier.orcidhttps://orcid.org/ 0000-0002-7024-9376es_MX
dc.identifier.scopusid57226250292es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650913
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACyTes_MX
dc.relationCOECYTJAL proyecto 7817-2019es_MX
dc.relation.isFormatOfdraftes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ENERGÉTICA::OTRASes_MX
dc.subject.keywordJet firees_MX
dc.subject.keywordSemantic segmentationes_MX
dc.subject.keywordDeep learninges_MX
dc.subject.lcshTechnologyes_MX
dc.titleCharacterization of jet fire flame temperature zones using a deep learning-based segmentation approaches_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Tesis Carmina Pérez Guerrero.pdf
Size:
9.17 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis.pdf
Size:
184.48 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
SignaturePage.pdf
Size:
415.73 KB
Format:
Adobe Portable Document Format
Description:
Signature Page
Loading...
Thumbnail Image
Name:
Autoria Carmina Pérez Guerrero.pdf
Size:
48.25 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia