Machine learning and cox based benchmarking tool: exploration of survival models associated with chronic degenerative diseases
dc.audience.educationlevel | Estudiantes/Students | es_MX |
dc.contributor.advisor | Tamez Peña, Jose Gerardo | |
dc.contributor.author | Orozco Sánchez, Jorge Andrés | |
dc.contributor.cataloger | emipsanchez | es_MX |
dc.contributor.committeemember | Trevino Alvarado, Víctor Manuel | |
dc.contributor.committeemember | Martínez Ledesma, Juan Emmanuel | |
dc.contributor.committeemember | Martínez Torteya, Antonio | |
dc.contributor.department | Escuela de Ingeniería y ciencias | es_MX |
dc.contributor.institution | Campus Monterrey | es_MX |
dc.creator | TAMEZ PEÑA, JOSE GERARDO; 67337 | |
dc.date.accessioned | 2021-08-14T03:30:01Z | |
dc.date.available | 2021-08-14T03:30:01Z | |
dc.date.created | 2020-04 | |
dc.date.embargoenddate | 2021-04-30 | |
dc.date.issued | 2020-04-30 | |
dc.description | https://orcid.org/0000-0003-1361-5162 | es_MX |
dc.description.abstract | the present work reports the exploration of the CoxBenchmarking function applied to chronic-degenerative disease datasets associated with survival. CoxBenchmarking implementation is a computer-based benchmarking algorithm that compares the Survival Models that were constructed by several machine learning strategies. It was developed as an extension of FRESA.CAD package and uses its Random Holdout Cross-Validation. CoxBenchmarking provides an algorithm that generates eleven distinct survival models through feature selection of ML-based techniques: 6 wrappers and 5 filters. Besides, the function summarizes the results with tables and graphs by providing a well-ordered data structure and a plot function. | es_MX |
dc.description.degree | Maestría en Ciencias Computacionales | es_MX |
dc.format.medium | Texto | es_MX |
dc.identificator | 7||33||3304||120304 | es_MX |
dc.identifier.citation | Orozco Sánchez, J. (2020). Machine Learning and Cox Based Benchmarking Tool: Exploration of Survival Models Associated with Chronic Degenerative Diseases (Tesis de Maestría / master Thesis). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/637504 | es_MX |
dc.identifier.cvu | https://orcid.org/0000-0002-7196-3977 | es_MX |
dc.identifier.orcid | https://orcid.org/0000-0002-7196-3977 | es_MX |
dc.identifier.uri | https://hdl.handle.net/11285/637504 | |
dc.language.iso | eng | es_MX |
dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
dc.relation.impreso | 2020-04 | |
dc.relation.isFormatOf | versión publicada | es_MX |
dc.relation.isreferencedby | REPOSITORIO NACIONAL CONACYT | |
dc.rights | openAccess | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL | es_MX |
dc.subject.keyword | Machine learning | es_MX |
dc.subject.keyword | Alzheimer's | es_MX |
dc.subject.keyword | Cox | es_MX |
dc.subject.keyword | Breast cancer | es_MX |
dc.subject.lcsh | Technology | es_MX |
dc.title | Machine learning and cox based benchmarking tool: exploration of survival models associated with chronic degenerative diseases | es_MX |
dc.type | Tesis de maestría |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- OrozcoSanchez_TesisdeMaestriaPDFA.pdf
- Size:
- 16.69 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis de Maestría
Loading...

- Name:
- CartaAutorizacionTesis.docx
- Size:
- 32.2 KB
- Format:
- Microsoft Word XML
- Description:
- Carta Autorización
Loading...

- Name:
- Orozco Sánchez_ActadeGradoPDFA.pdf
- Size:
- 213.92 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado
License bundle
1 - 1 of 1
Loading...

- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description: