Data-Driven Recurrent Neural Networks Modeling of Cyanobacteria Growth in Bubble Columns Reactors under Sparging with CO2-enriched Air

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorFlores Tlacuahuac, Antonio
dc.contributor.authorAvilez Cuahquentzi, Karen Joselyne
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberHernández Romero, Ilse María
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorParra Saldivar, Roberto
dc.date.accepted2023-11-08
dc.date.accessioned2025-04-10T01:21:16Z
dc.date.issued2023-09-28
dc.descriptionhttps://orcid.org/0009-0004-1291-0973es_MX
dc.description.abstractThe Institute of Advanced Materials for Sustainable Manufacturing at ITESM conducted a 10-month experiment on biomass production using cyanobacteria in bioreactors. This study highlights the robust predictive capabilities of LSTM models, which surpass traditional approaches. The research unfolds through key stages, emphasizing the importance of dataset preprocessing, including outlier identification, data scaling, and feature selection using statistical methods. Recognizing the dataset’s sequential nature, we transform the time series into supervised learning, enabling effective training and network design. The LSTM model architecture, detailed in Appendices A and B, efficiently captures temporal dependencies, offering an effective alternative to dynamic models. Eval uation metrics, such as mean absolute error and mean absolute percentage error, underscore the accuracy of the model, which is crucial for precision-demanding applications. This work significantly contributes to reaction system analysis by presenting a streamlined approach for forecasting biomass production. We introduce an innovative monitoring approach using CO2 concentration [%], yielding valuable insights for sustainable industrial practices. Looking forward, our LSTM models hold promise for optimizing algae biomass production systems. Future research will explore Bayesian optimization techniques, hyperparameter tuning, and real-time sensor data integration. This holistic approach aligns with ongoing efforts in industrial biotechnology and sustainability, bridging the oretical research with practical applications.es_MX
dc.description.degreeMaster of Science in Engineering Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||330414
dc.identifier.citationAvilez, K. y Flores, A (2023). Data-Driven Rtecurrent Neural Neworks Modeling of Cyanobacteria Growth in Bubble Columns Reactors under Sparging with CO2-enriched Air. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703482
dc.identifier.cvu1146533es_MX
dc.identifier.issnCEPPI-D-23-01019
dc.identifier.orcidhttps://orcid.org/0009-0008-1885-1491es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703482
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ORDENADORES DIGITALES
dc.subject.keywordcyanobacteria, biomass, LSTM models, sequential data, forecasting.es_MX
dc.subject.lcshSciencees_MX
dc.titleData-Driven Recurrent Neural Networks Modeling of Cyanobacteria Growth in Bubble Columns Reactors under Sparging with CO2-enriched Aires_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
AvilezCuahquentzi_TesisMaestria.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
AvilezCuahquentzi_CartaAutorizacion.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
AvilezCuahquentzi_ActadeGrado.pdf
Size:
93.94 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
AvilezCuahquentzi_FirmasActadeGrado_CartaAutorizacion.pdf
Size:
187.3 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado_Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia