Intent discovery from conversational logs to prepare a student admission chatbot for Tecnológico de Monterrey

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorTreviño Lozano, Rolando
dc.contributor.catalogertolmquevedoes_MX
dc.contributor.committeememberAlvarado Uribe, Joanna
dc.contributor.committeememberCastro Sánchez, Noé Alejandro
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorCeballos Cancino, Héctor Gibrán
dc.date.accepted2021-05-27
dc.date.accessioned2022-05-26T21:10:23Z
dc.date.available2022-05-26T21:10:23Z
dc.date.created2019
dc.date.issued2021-05
dc.description.abstractOnline chat services allow companies to serve and attend to their customers to resolve problems or doubts about a specific concept. Lately, conversational bots have been adapting to this domain, allowing a broader attention capacity while easing interactions between users and the company while also easing work for agents, increasing productivity and service quality. To design a chatbot is a time-consuming task as the designer has to provide the core key concepts known as intents that the conversational bot will respond to and provide example sentences and their respective answers. We propose a framework that receives as input data corresponding to conversational transcripts between prospects and agents and transform them through the use of regular expressions into a tabular dataset of the conversations in log format easing their analysis and representation to be converted into a convenient word representation of TF-IDF which serves as input for applying unsupervised machine learning algorithms as Non-Matrix Factorization for Topic Modeling and K-Means for utterance clustering to discover possible intents, which can then be passed on to the design of a knowledge base, which this last step of intent discovery allows an iterative process to process new conversations and identify changes in the intents or the addition of new ones. Results demonstrate that it is possible to cluster the utterances and find clusters that align to a possible intent out of a list of possible intents and such list is subject to change in time for continuously improving intent discovery. A cosine similarity threshold was set at 0.47 to differentiate correctly aligned clusters from those not aligned; 18 intents out of 55 were able to be correctly aligned with an initial intents list, and a total of 35 different intents were able to be captured by the clustering process. No exact similar research was found in the literature, as other works on the domain imply an already curated and labeled dataset to being working on classifying the intents rather than discovering them during the knowledge base design, also they do not take into account the whole process of transforming the raw conversations into a tabular and processed dataset.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120317es_MX
dc.identifier.citationTreviño Lozano, R. (2021) Intent Extraction from Conversational Logs to Prepare a Student Admis-sion Chatbot for Tecnológico de Monterrey (Tesis Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-7148-9649es_MX
dc.identifier.scopusid57217014971es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648408
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INFORMÁTICAes_MX
dc.subject.keywordconversational botes_MX
dc.subject.keywordknowledge basees_MX
dc.subject.keywordintent discoveryes_MX
dc.subject.keywordnatural language processinges_MX
dc.subject.lcshTechnologyes_MX
dc.titleIntent discovery from conversational logs to prepare a student admission chatbot for Tecnológico de Monterreyes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Intent_Discovery_from_Conversational_Logs_to_Prepare_a_Student_Admission_Chatbot_for_Tecnol_gico_de_Monterrey.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format
Description:
Archivo de Tesis
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
69.5 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización
Loading...
Thumbnail Image
Name:
Firmas RolandoTreviño_NC-HC-JAU-NH-RM.pdf
Size:
452.96 KB
Format:
Adobe Portable Document Format
Description:
Hoja de Firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia