Financial Habits of Mexican Women using Machine Learning Algorithms

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorLozano Medina, Jessica Ivonne
dc.contributor.catalogerRR/tolmquevedoes_MX
dc.contributor.committeememberCeballos Cancino, Héctor Gibrán
dc.contributor.committeememberFlores Segovia, Miguel Alejandro
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorHervert Escobar, Laura
dc.date.accepted2020-04
dc.date.accessioned2021-10-08T17:45:20Z
dc.date.available2021-10-08T17:45:20Z
dc.date.created2020-04-30
dc.date.issued2020-04
dc.description0000-0003-0966-5685es_MX
dc.description.abstractThis research was conducted under the Master in Computational Science program at Tecnológico de Monterrey. The proposal is a model to assess a profile risk for Mexican women, who require the service of a financial portfolio offered by a financial institution. Typically, women are scored with a lower financial risk than men. However, the understanding of variables and indicators that lead to such results, are not fully understood. Furthermore, the stochastic nature of the data makes it difficult to generate a suitable profile to offer an adequate financial portfolio to the women segment. Therefore, there is a great interest for developing methods that correctly model the behavior, and aid the decision-making process in financial services. Several models in the State-of-art for this type of analysis is done with linear programming and statistical techniques. Therefore, this study will use a benchmark of Machine Learning algorithms, such as Unsupervised and Supervised Learning algorithms, to extract information on four different datasets relevant to the population of interest. The first phase involves applying state-of-the-art techniques on public datasets of the Mexican population, whereas the second phase involves a future research involving a financial institution to create the model for the Women segment. It was found that financial habits of the population are heavily dependent on the region. There also an important group in the population characterized for not possessing an account in a financial institution and also not having emergency funds. In the case of the profiles of women, the most important attributes were their civil status and their participation in the workforce. The largest group of women are housewives, though the second largest group consists of married women who also participate in the workforce.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120310es_MX
dc.identifier.citationLozano Medina, J.I. (2020). Financial Habits of Mexican Women with Machine Learning Algorithms (Master’s dissertation). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/640256es_MX
dc.identifier.cvu929181es_MX
dc.identifier.orcid0000-0002-1256-7851es_MX
dc.identifier.urihttps://hdl.handle.net/11285/640256
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-05-18
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ENSEÑANZA CON AYUDA DE ORDENADORes_MX
dc.subject.keywordFinancial habitses_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordMexicoes_MX
dc.subject.keywordWomenes_MX
dc.subject.keywordProfileses_MX
dc.subject.lcshTechnologyes_MX
dc.titleFinancial Habits of Mexican Women using Machine Learning Algorithmses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Firmado_CartaAutorizacionTesis.pdf
Size:
673.52 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización de Tesis firmada
Loading...
Thumbnail Image
Name:
tesisJessica Ivonne Lozano Medina.pdf
Size:
5.21 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia