Machine learning detection of severity level of maladaptive plasticity in tinnitus and neuropathic pain

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorAlonso Valerdi, Luz María
dc.contributor.authorGonzález Sánchez, Andrea
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberIbarra Zarate, David Isaac
dc.contributor.committeememberRomán Godínez, Israel
dc.contributor.committeememberTamez Peña, José Gerardo
dc.contributor.committeememberMontemayor Zolezzi, Daniela
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accessioned2025-05-07T22:56:29Z
dc.date.embargoenddate2024-12
dc.date.issued2023
dc.description167578es_MX
dc.description.abstractTinnitus and NP datasets were analyzed separately and in conjunction, under the hypothesis that they share an underlying mechanism of maladaptive plasticity. Linear and non-linear features were extracted from the EEG signal data, including power spectral density, Shannon entropy and imaginary coherence between channel data. Feature selection with BorutaSHAP wrapper method was applied as part of the model construction process. Classification was performed using both traditional ML algorithms, Random Forest, Support Vector Machine, and k-Nearest Neighbors, and then implementing a prediction voting mechanism, as well as the deep learning neural network EEGNet. In general, SVM had the best performance across experiments. For the tinnitus dataset, the ensemble classifier had the highest accuracy of 50.08%. For the NP dataset, SVM had the best performance measured through an accuracy of 58.43%. For the BC dataset, the highest accuracy score of 42.46% was obtained by SVM. For the EEGNet implementation, the average accuracy obtained in the tinnitus dataset was 51%, the NP dataset was 97.92%, and the BC dataset was 74.31%. EEGNet was the best performing model, particularly for the NP dataset. The top selected features of the feature selection algorithm suggests gamma as a potential biomarker for the detection of maladaptive plasticity.es_MX
dc.description.degreeMaestría en Ciencias Computacionaleses_MX
dc.format.mediumTexto
dc.identificator1||12||1203||120304es_MX
dc.identifier.citationGonzález Sánchez, A. (2023). Machine Learning Detection of Severity Level of Maladaptive Plasticity in Tinnitus and Neuropathic Pain. [Tesis maestría], Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703614
dc.identifier.cvu1186469es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703614
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfdraftes_MX
dc.rightsopenAccesses_MX
dc.rights.embargoreasonTodas las tesis de la Escuela de Ingeniería y Ciencias se irán a 1 año de embargo. Si la Oficina de Transferencia de Tecnología (OTT) lo considera necesario, podrá extender el periodo de embargo.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordTinnitus
dc.subject.keywordNeuropathic pain
dc.subject.keywordMaladaptive plasticity
dc.subject.keywordElectroencephalography
dc.subject.keywordMachine learning
dc.subject.lcshTechnologyes_MX
dc.titleMachine learning detection of severity level of maladaptive plasticity in tinnitus and neuropathic paines_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
GonzalezSanchez_TesisMaestria.pdf
Size:
4.2 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
GonzalezSanchez_CartaAutorizacion.pdf
Size:
97.95 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
GonzalezSanchez_ActadeGrado.pdf
Size:
360.38 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia