Development of polygenic scores for the Mexican population for obesity, diabetes, and dyslipidemias

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorTreviño Alvarado, Víctor Manuel
dc.contributor.authorTorres Treviño, David
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberGarza Hernández, Debora
dc.contributor.committeememberMartínez Ledesma, Juan Emmanuel
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2024-11-08
dc.date.accessioned2025-01-06T22:15:40Z
dc.date.issued2024-10
dc.descriptionhttps://orcid.org/0000-0002-7472-9844
dc.description.abstractGenetic prediction estimates a risk for a diseases using genetic data, aiding with earlier diagnoses, prevention, and targeted treatments. Polygenic scores (PGS) estimate risk by multiple single nucleotide polymorphisms (SNPs), the most common form of genetic variation. Though each SNP has a small effect, their joint effect provides key insights into the risk for common diseases influenced by multiple genetic factors. A key limitation of PGS is that the majority have been trained on European populations, leading to a significant drop in predictive accuracy when applied to non-European groups. This study aimed to address this issue by improving the accuracy of PGS for type 2 diabetes (T2D), BMI, Triglycerides, Total Cholesterol, HDL, and LDL levels in the Mexican population through a series of strategies. We implemented various established methods for constructing PGS, including techniques that have shown success in non-European populations and ensemble models combining ancestrybased PGS scores to optimize accuracy across diverse populations. Our key innovation lies in applying shrinkage to the ancestry-based PGS according to each individual’s ancestry proportions, prioritizing ancestry-based scores that are genetically closer to the individual and enhancing the relevance of matched ancestry data. Our results showed no improvement, and in some cases, a decrease in accuracy when using multi-ethnic or Mexican training data, likely due to the underrepresentation of non-European individuals and the small sample size of the Mexican GWAS. However, notable exceptions included LDL and Triglycerides predictions, where the Mexican GWAS outperformed the European GWAS. This outcome may be attributed to genetic loci associated with lipid levels unique to Mexicans, some linked to Amerindian ancestry which explain a greater variance than the loci captured in the European GWAS. Moreover, ensembles incorporating both ancestry adjustment and the Mexican-based PGS underperformed compared to the European baseline model, whereas those excluding the Mexican-based PGS exceeded the European baseline’s performance. Ensembles constructed with Lassosum and LDpred2 fell short of the PRScsx ensemble’s results, suggesting an advantage to jointly modeling multiple populations rather than treating them separately. Introducing ancestry adjustment in PRScsx (RAW4) maintained accuracy and, in some traits, even improved it for subgroups with predominantly African ancestry, showing promise in the proposed ancestry-based shrinkage approach. However, despite these improvements, disparities in accuracy persisted across population subgroups, especially for individuals with a high proportion of African ancestry. These results highlight the current challenge of generalizability gaps in PGS models, even for methods designed for diverse populations like PRScsx. Future studies could focused on developing a sophisticated Bayesian framework for ancestry adjustment, refining ancestry estimation methods, or incorporating a Native American component to better capture the genetic diversity in the Mexican population.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator331499
dc.identifier.citationTorres Treviño, D. (2024). Development of polygenic scores for the Mexican population for obesity, diabetes, and dyslipidemias [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702979
dc.identifier.cvu1276221
dc.identifier.urihttps://hdl.handle.net/11285/702979
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRAS
dc.subject.keywordPolygenic scores
dc.subject.keywordGenetic risk
dc.subject.keywordSNPs
dc.subject.keywordGWAS
dc.subject.keywordAncestry
dc.subject.lcshTechnology
dc.titleDevelopment of polygenic scores for the Mexican population for obesity, diabetes, and dyslipidemias
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
TorresTrevino_TesisMaestríapdfa.pdf
Size:
7.98 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
TorresTrevino_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
238.51 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
TorresTrevino_Carta Autorización.pdf
Size:
157.31 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia