Efficient analysis and compression of urban green areas in RGB drone imagery using the OSAVI index

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorCamacho León, Sergio
dc.contributor.authorHernández Animas, Edwin
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberMendoza Montoya,Omar
dc.contributor.committeememberBarrios Piña, Héctor Alfonso
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2025-06
dc.date.accessioned2025-07-14T17:26:30Z
dc.date.issued2025-06-12
dc.descriptionhttps://orcid.org/0000-0002-5996-9997
dc.description.abstractGreen urban area detection is essential for environmental planning; traditional field surveys are laborintensive and time-consuming, making remote sensing (drone and satellite imagery) a powerful alternative. Three main problems are detected by working with these technologies: i) While enabling detailed analysis of lawns and individual trees due to their high spatial resolution, this results in data storage demands. ii) Moreover, the Normalized Difference Vegetation Index (NDVI), the most widely used for analyzing general vegetation, is highly sensitive to soil brightness, making it less suitable for examining urban greenery where bare soil, artificial surfaces, and mixed land covers are common. iii) Additionally, existing tree inventory algorithms in urban or heterogeneous environments remain labor-intensive, as they require annotated training samples to effectively distinguish trees from surrounding features. This study presents high-resolution multispectral and RGB imagery captured by an Unmanned Aerial Vehicle (UAV), the DJI MAVIC 3M, used to measure general vegetation. A masking process based on morphological operations was applied to segment green urban areas in the RGB image, to optimize both image storage size with lossless compression (Deflate & LZW) and traditional tree inventory based on crown detection (DeepForest). The segmentation based on Optimized Soil-Adjusted Index (OSAVI) mask applied in urban areas presents multiple advantages in terms of reduction of storage size due to the increase in homogeneous regions with pixel values sharing identical color characteristics. By using the OSAVI vegetation index as the masking criterion, the dense vegetation (trees) is not affected during the process, preserving its location and color (pixel values) of the original image, excelling current tree inventory algorithms (DeepForest) based on orthoimages without the need to prepare additional training data. Using the OSAVI instead of NDVI outperformed traditional green urban area segmentation, demonstrating 25% more robustness in avoiding saturation caused by Near-Infrared (NIR) reflecting areas. The segmentation performance achieved by OSAVI and morphological operations resulted in: IoU = 0.85 | Dice = 0.91 | Precision = 0.89 | Recall = 0.94 | Accuracy = 0.96. The final storage sizes of the masked RGB images were equal to the percentage of vegetation multiplied by the storage size of the non-masked (original) compressed images, with a Pearson Correlation of 0.98, being the Deflate method superior (bpp = 9) to the LZW method (bpp = 11.40) in terms of storage efficiency. The comparison between the tree inventory on the original RGB scenarios presented a Mean Absolute Error (MAE) = 193.25, and the RGB images masked by OSAVI index MAE = 98.25, 49% better and closer to the real tree inventory, with a Friedman test p-value = 0.046 rejecting the null hypothesis that all methods (Baseline: Precision = 0.33 | Recall = 0.45 | F1 = 0.38 and Proposed: Precision = 0.54 | Recall = 0.53 | F1 = 0.53 ) perform equally.
dc.description.degreeMaster of Science In Engineering
dc.format.mediumTexto
dc.identificator250599
dc.identifier.citationHernández Animas, Efficient analysis and compression of urban green areas in RGB drone imagery using the OSAVI index [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703824
dc.identifier.orcidhttps://orcid.org/0009-0006-7248-7112
dc.identifier.urihttps://hdl.handle.net/11285/703824
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationSecretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI)
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::BANCOS DE DATOS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::INGENIERÍA Y TECNOLOGÍA DEL MEDIO AMBIENTE::OTRAS
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::CIENCIAS DE LA TIERRA Y DEL ESPACIO::GEOGRAFÍA::OTRAS
dc.subject.keywordOSAVI
dc.subject.keywordNDVI
dc.subject.keywordMasking
dc.subject.keywordMorphological Operations
dc.subject.keywordLZW
dc.subject.keywordSegmentation
dc.subject.keywordDeepForest
dc.subject.keywordGreen Urban Areas
dc.subject.lcshScience
dc.titleEfficient analysis and compression of urban green areas in RGB drone imagery using the OSAVI index
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
HernandezAnimas_TesisMaestria_pdfa.pdf
Size:
7.21 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
HernandezAnimas_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
625.22 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
HernandezAnimas_CartaAutorizacion_pdf.pdf
Size:
156.06 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia