Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a Machine Learning approach

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorFlores Tlacuahuac, Antonio
dc.contributor.authorPulido Victoria, Luis Antonio
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberBonilla Cruz, José
dc.contributor.committeememberHernández Romero, Ilse María
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accepted2023-09-01
dc.date.accessioned2025-04-23T20:05:36Z
dc.date.issued2023-08-15
dc.description.abstractPrintability, a key factor in the success of Additive Manufacturing (AM) processes, relies on various aspects, including material properties and process parameters. This study aims to explore the relationship between the rheological properties of binder-free TiO2-based ceramic pastes and their printability using a machine learning approach, specifically utilizing a feedforward Deep Neural Network (DNN) model. The main objective of this thesis is to develop a predictive model that can accurately estimate the printability of binder-free TiO2-based ceramic pastes based on key rheological properties. To achieve this, a comprehensive dataset consisting of 25 samples of rheological properties and corresponding printability assessments was collected and used for model training and evaluation. The methodology involved the collection of rheological and viscoelastic data for a range of TiO2-based ceramic pastes including shear viscosity (η) values as a function of shear rate (γ_ ), and storage (G0) and loss (G00) modulus values as a function of oscillatory stress (σ). Rheological properties (γ_ and η) were then utilized as input features for the feed-forward DNN model, while the viscoelastic data (G0 and G00) was set as the target properties. The model was trained using a portion of the dataset, and the remaining set was utilized for testing. No validation set was defined due to the small size of the dataset. The results obtained from the developed model not only demonstrated a correlation between the rheological properties and printability of the studied ceramic pastes but also revealed a relationship between the rheological and viscoelastic behavior of the samples, providing deeper insights into this ceramic system. The predictive capabilities of the model were evaluated based on performance metrics such as Mean Squared Error (MSE) and Relative Error ( ). The discussion section provides a detailed analysis of the findings and explores the limitations of the study, such as the sample size and potential influence of the experimental work on the model’s performance. This thesis contributes to the field of AM by presenting a machine learning-based approach for predicting the printability of binder-free TiO2-based ceramic pastes. The DNN model proves to be a valuable tool for assessing the printability of the pastes. Moreover, it provides further insights into the ceramic system by correlating rheological and viscoleastic properties. This research opens up possibilities for optimizing paste formulations and process parameters to enhance the additive manufacturing of ceramics. Furthermore, the model here proposed may serve as starting point for exploring alternate machine learning algorithms, such as transfer learning, generative networks and even Bayesian optimization.es_MX
dc.description.degreeMaestría en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator331212
dc.identifier.citationPulido Victoria, L. A. (2023). Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a Machine Learning approach [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703509
dc.identifier.cvu1151747es_MX
dc.identifier.orcid0009-0004-1968-2037es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703509
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfdraftes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LA CONSTRUCCIÓN::ENSAYOS DE MATERIALES
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordDeep Neural Networkses_MX
dc.subject.keywordDIW 3D printinges_MX
dc.subject.keywordCeramicses_MX
dc.subject.keywordTiO2es_MX
dc.subject.lcshTechnology
dc.titlePrediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a Machine Learning approaches_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
PulidoVictoria_TesisDeMaestria.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format
Description:
Tesis
Loading...
Thumbnail Image
Name:
PulidoVictoria_CartaAutorizacion.pdf
Size:
254.91 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
PulidoVictoria_HojaDeFirmas.pdf
Size:
114.17 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia