Detection and classification of gastrointestinal diseases using deep learning techniques

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorOchoa Ruiz, Gilberto
dc.contributor.authorChavarrias Solano, Pedro Esteban
dc.contributor.catalogerpuemcuervo, emipsanchezes_MX
dc.contributor.committeememberSanchez Ante, Gildardo
dc.contributor.committeememberHinojosa Cervantes, Salvador Miguel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorAli, Sharib
dc.creatorOCHOA RUIZ, GILBERTO; 3016604
dc.date.accepted2022-11-30
dc.date.accessioned2024-05-02T21:02:57Z
dc.date.available2024-05-02T21:02:57Z
dc.date.issued2022-11-30
dc.description.abstractThis document presents a research thesis for the Master in Computer Science (MCCi) degree at Tecnologico de Monterrey. Cancer is a pathological situation in which old or abnormal cells do not die when they should. Even though there are different cancer types, the incidence of colorectal cancer position it as the third most common one worldwide. Endoscopy is the primary diagnostic tool used to manage gastrointestinal (GI) tract malignancies, however, it is a time consuming and subjective process based on the experience of the clinician. Previous work has been done leveraging the use of artificial intelligence methods for polyps detection, instrument tracking and segmentation of gastric ulcers. This work is focused on the detec- tion and classification of gastrointestinal diseases. This thesis proposal seeks to implement a knowledge distillation framework with class-aware loss for endoscopic disease detection in the upper and lower part of the gastrointestinal tract. Relevant features will be extracted from endoscopic images to feed and train a deep learning-based object detection model. The method is evaluated using standard computer vision metrics: IoU and mAP25, mAP50, mAP75, mAP25:75. This proposal outperforms state-of-the-art methods and its vanilla version, which means that it has the potential to be an auxiliary quantitative tool to reduce high-missed de- tection rates in endoscopic procedures.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationChavarrias Solano, P. E. (2022). Detection and classification of gastrointestinal diseases using deep learning techniques [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/652451es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-7689-052Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/652451
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordEndoscopy disease detectiones_MX
dc.subject.lcshTechnologyes_MX
dc.titleDetection and classification of gastrointestinal diseases using deep learning techniqueses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
ChavarriasSolano_TesisMaestriapdfa.pdf
Size:
6.68 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
ChavarriasSolano_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
407.41 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
85.63 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia