TYolov5: A Temporal Yolov5 detector based on quasi-recurrent neural networks for real-time handgun detection in video

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorGonzález Mendoza, Miguel
dc.contributor.authorDuran Vega, Mario Alberto
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberOchoa Ruiz, Gilberto
dc.contributor.committeememberMorales González Quevedo, Annette
dc.contributor.committeememberSánchez Castellanos, Héctor Manuel
dc.contributor.departmentSchool of Engineering and Sciencees_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorChang Fernández, Leonardo
dc.creatorGONZALEZ MENDOZA, MIGUEL; 123361
dc.date.accepted2020-12-01
dc.date.accessioned2022-05-18T15:28:53Z
dc.date.available2022-05-18T15:28:53Z
dc.date.created2020-12-01
dc.date.embargoenddate2022-12-01
dc.date.issued2020-12-01
dc.descriptionhttps://orcid.org/0000-0001-6451-9109es_MX
dc.description.abstractTimely handgun detection is a crucial problem to improve public safety; nevertheless, the effectiveness of many surveillance systems, still depend of finite human attention. Much of the previous research on handgun detection is based on static image detectors, leaving aside valuable temporal information that could be used to improve object detection in videos. To improve the performance of surveillance systems, a real-time temporal handgun detection system should be built. Using Temporal Yolov5, an architecture based in Quasi-Recurrent Neural Networks, temporal information is extracted from video to improve the results of the handgun detection. Moreover, two publicity available datasets are proposed, labeled with hands, guns, and phones. One containing 2199 static images to train static detectors, and another with 5960 frames of videos to train temporal modules. Additionally, we explore two temporal data augmentation techniques based in Mosaic and Mixup. The resulting systems are three real-time architectures: one focused in reducing inference with a mAP(50:95) of 56.1, another in having a good balance between inference and accuracy with a mAP(50:95) of 59.4, and a last one specialized in accuracy with a mAP(50:95) of 60.6. Temporal Yolov5 achieves real-time detection and take advantage of temporal features contained in videos to perform better than Yolov5 in our temporal dataset. Making TYolov5 suitable for real-world applications.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||330417es_MX
dc.identifier.citationDuran Vega, M. A. (2020). TYolov5: A Temporal Yolov5 detector based on quasi-recurrent neural networks for real-time handgun detection in video (Unpublished master's thesis). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/648311es_MX
dc.identifier.cvu928048es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-0319-0837es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648311
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-12-01
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsrestrictedAccesses_MX
dc.rights.embargoreasonPublicaciones científicas acerca de este trabajo están siendo terminadas y otras ya se sometieron a revisión.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REALes_MX
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordTemporal Object detectiones_MX
dc.subject.keywordConvLSTMes_MX
dc.subject.keywordQRNNes_MX
dc.subject.keywordHandgun detectiones_MX
dc.subject.keywordYolov5es_MX
dc.subject.lcshTechnologyes_MX
dc.titleTYolov5: A Temporal Yolov5 detector based on quasi-recurrent neural networks for real-time handgun detection in videoes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Tesis final_Mario_Duran_Vega.pdf
Size:
12.52 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf.pdf
Size:
142.47 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Autoria Mario Duran.pdf
Size:
114.39 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Firmas Mario Duran.pdf
Size:
251.66 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia